Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Golgi study on the neuronal morphology in the hypothalamus of the Japanese quail (Coturnix coturnix japonica)

I. Tuberal and mammillary regions

  • 24 Accesses

  • 5 Citations


Neuronal morphology and dendritic architecture of the tuberal and mammillary regions in the hypothalamus of the quail (Coturnix coturnix japonica) were investigated by means of classical neuroanatomical methods (Bodian silver impregnation, Luxol-fast blue, cresyl violet, toluidine blue, rapid Golgi method). The tuberal region is characterized by isodendritic neurons, in particular: a) pyriform and bipolar neurons, occasionally arranged diagonally to the ventricular surface; b) CSF-contacting neurons, located subependymally or more deeply in the periventricular gray, which are especially abundant in the paraventricular organ and in the proximity of the median eminence; c) numerous multipolar neurons, endowed with stout, almost unbranched dendritic processes, occupying generally the medio-lateral areas of the hypothalamus. Some multipolar neurons display somata, pyramidal or ovoidal in shape, almost imperceptibly tapering into three or more dendritic trunks. These relatively straight and long dendrites are rich in dendritic spines. In the mammillary region, Golgi impregnation shows multipolar neurons of medium size, most likely belonging to the lateral mammillary nucleus.

This is a preview of subscription content, log in to check access.


  1. Baylé JD, Ramade F, Olivier J (1974) Stereotaxic topography of the brain of the quail (Coturnix coturnix japonica) J Physiol (Paris) 68:219–241

  2. Berk ML, Reaves TA jr, Haiward JN, Finkelstein JA (1982) The localization of vasotocin and neurophysin neurons in the diencephalon of the pigeon Columbia livia. J Comp Neurol 204:392–406

  3. Blähser S, Vigh-Teichmann I, Ueck M (1982) Cerebrospinal fluidcontacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis. Cell Tissue Res 224:693–697

  4. Bodian D (1937) The staining of paraffin section of nervous tissues with activated protargol. The role of fixatives. Anat Rec 69:153–162

  5. Calas A, Bosc S (1976) Identification des fibres noradrénergiques et sérotoninergiques dans l'éminence médiane: Étude radioautographique, pharmacologique et microspectrofluorimétrique. Ann Histochem 21:77–82

  6. Calas A, Hartwig HG, Collin JP (1974) Noradrenergic innervation of the median eminence. Microspectrofluorimetric and pharmacological study in the duck, Anas plathyrhynchos. Z Zellforsch 147:491–504

  7. Contenti E, Ramieri G, De Bernochi A (1982) Organizzazione strutturale e citoarchitettura dell'ipotalamo tuberale del polio. 38o Conv Naz Soc It Anat, Riassunti: 267 (Abstract)

  8. Fasolo A, Franzoni MF (1974) A Golgi study on tanycytes and liquor-contacting cells in the posterior hypothalamus of the newt. Cell Tissue Res 154:151–166

  9. Fasolo A, Franzoni MF (1977) A Golgi study of the hypothalamus of Amphibia. Neuronal typology. Cell Tissue Res 178:341–354

  10. Fasolo A, Franzoni MF (1983) The hypothalamus of Lacerta sicula R. II A Golgi study of the preoptic area. Cell Tissue Res 223:61–72

  11. Fasolo A, Gaudino G (1981) Somatostatin immunoreactive neurons and fibers in the hypothalamus of the newt. Gen Comp Endocrinol 43:256–263

  12. Fasolo A, Gaudino G (1982) Immunohistochemical localization of Somatostatin-like immunoreactivity in the hypothalamus of the lizard, Lacerta sicula. Gen Comp Endocrinol 48:205–212

  13. Fasolo A, Mazzi V, Franzoni MF (1978) A Golgi study of the hypothalamus of Actinopterygii. II The posterior hypothalamus. Cell Tissue Res 191:433–447

  14. Fasolo A, Franzoni MF, Panzica GC, Panzica-Viglietti C (1979) Neuronal pattern in the hypothalamus of submammalian vertebrates. A survey with some evolutionary notes. Neurosci Lett Suppl 3:159 (Abstract)

  15. Franzoni MF, Fasolo A (1982) The hypothalamus of Lacerta sicula R. I A Golgi study on the caudal hypothalamus. Cell Tissue Res 223:61–72

  16. Furness JB, Costa M, Blessing WW (1977) Simultaneous fixation and production of catecholamine fluorescence in central nervous tissue by perfusion with aldehydes. Histochem J 9:745–750

  17. Guglielmone R, Panzica GC (1983) Localization of catecholaminecontaining cell bodies in the posterior hypothalamus of chickens. Neurosci Lett Suppl 14:147 (Abstract)

  18. Guglielmone R, Panzica GC (1984) Typology, distribution and development of the catecholamine-containing neurons in the chicken brain. Cell Tissue Res (in press)

  19. Huber GC, Crosby EC (1929) The nuclei and fibre paths of the avian diencephalon with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48:1–225

  20. Kah O, Chambolle P, Duborg P, Dubois MP (1982) Localisation immunocytochimique de la somatostatine dans le cerveau antérieur et l'hypophyse de deux téléostéens, le Cyprin (Carassius auratus) et Gambusia sp. CR Acad Sci 294:519–524

  21. Korf H-W, Panzica GC, Viglietti Panzica C (1983a) Neuronal organization of the paraventricular nucleus (NPV) of the Pekin duck. Anat Anz 153:280 (Abstract)

  22. Korf H-W, Viglietti-Panzica C, Panzica GC (1983b) A Golgi study on the cerebrospinal fluid (CSF) — contacting neurons in the paraventricular nucleus of the Pekin duck. Cell Tissue Res 228:149–163

  23. Kuenzel WJ, van Tienhoven A (1982) Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J Comp Neurol 206:293–313

  24. Kuhlenbeck H (1937) The ontogenetic development of the diencephalic centers in a bird's brain (chick) and comparison with the reptilian and mammalian diencephalon. J Comp Neurol 66:23–75

  25. Legait H (1959) Contribution à l'étude morphologique et expérimentale du système hypothalamo-neurohypophysaire de la Poule Rhode Island. These Louvain. Soc d'Impressions Typographiques, Nancy

  26. Millhouse DE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus. Vol I. M Dekker, New York and Basel, pp 221–266

  27. Oehmke H-J (1968) Regionale Strukturunterschiede im Nucleus infundibularis der Vögel (Passeriformes). Z Zellforsch 92:406–421

  28. Oksche A (1978) Evolution, differentiation and organization of hypothalamic systems controlling reproduction. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction. III Neural hormones and reproduction. Karger, Basel, 1–15

  29. Oksche A, Farner DS (1974) Neurohistological studies of the hypothalamo-hypophysial system of Zonotrichia leucophrys gambelii (Aves, Passeriformes), with special attention to its role in the control of reproduction. Adv Anat Embryol Cell Biol 48:1–136

  30. Panzica GC, Viglietti-Panzica C (1980) The preoptic area of the domestic fowl. I A Golgi study. Cell Tissue Res 207:395–406

  31. Panzica GC, Viglietti-Panzica C (1982) Local circuit neurons in the fowl paraventricular nucleus. A Golgi study. Neurosci Lett Suppl 10:365–366 (Abstract)

  32. Panzica GC, Viglietti-Panzica C (1983) A Golgi study of the parvocellular neurons in the paraventricular nucleus of the domestic fowl. Cell Tissue Res 231:603–613

  33. Panzica GC, Viglietti-Panzica C, Ramieri G, Gaudino G (1983) Intraependymal neurophysin-like neurons in the PVN of the domestic fowl. Neurosci Lett Suppl 14:273 (Abstract)

  34. Ramón-Moliner E (1968) The morphology of dendrites. In: Bourne GH (ed) The structure and function of nervous tissue. Vol I. Academic Press, New York and London, pp 205–267

  35. Romeis B (1968) Mikroskopische Technik. R Oldenbourg München-Wien, pp 1–757

  36. Vigh-Teichmann I, Vigh B (1974) The infundibular cerebrospinalfluid-contacting neurons. Adv Anat Embryol Cell Biol 50(2): 1–91

  37. Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal fluid (CSF)-contacting neurons. Arch Histol Jpn 46:427–468

  38. Vigh-Teichmann I, Vigh B, Aros B (1971) Liquorkontaktneurone in Nucleus infundibularis des Kükens. Z Zellforsch 112:188–200

  39. Viglietti-Panzica C, Contenti E (1983) Cytodifferentiation of the paraventricular nucleus in the chick embryo. Cell Tissue Res 229:281–297

  40. Viglietti-Panzica C, Panzica GC (1981) The hypothalamic magnocellular system in the domestic fowl. A Golgi and electron microscopic study. Cell Tissue Res 215:113–131

  41. Viglietti-Panzica C, Panzica GC, Korf H-W (1983) Morphological basis of interrelationship between the avian paraventricular nucleus and the cerebrospinal fluid. 78. Vers Anat Gesell, Abstracts: 34

  42. Weindl A, Sofroniew MV (1982) Peptide neurohormones and circumventricular organs in the pigeon. In: van Wimersma Greidanus (ed) Frontiers of hormone research. Karger, Basel, pp 88–104

  43. Wingstrand KG (1951) The structure and development of the avian pituitary from a comparative and functional view. Gleerup, Lund

  44. Yamada S, Mikami S, Yanaihara N (1982) Immunohistochemical localization of vasoactive intestinal polypeptide (VIP)-containing neurons in the hypothalamus of the Japanese quail, Coturnix coturnix. Cell Tissue Res 226:13–26

Download references

Author information

Correspondence to Dr. M. F. Franzoni.

Additional information

Investigations supported by MPI (40%) and CNR (82.00215.04) grants

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Franzoni, M.F., Viglietti-Panzica, C., Ramieri, G. et al. A Golgi study on the neuronal morphology in the hypothalamus of the Japanese quail (Coturnix coturnix japonica). Cell Tissue Res. 236, 357–364 (1984). https://doi.org/10.1007/BF00214239

Download citation

Key words

  • Hypothalamus, avian
  • Tuberal region
  • Mammillary region
  • Neuronal morphology
  • Coturnix coturnix japonica