Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extensive distance geometry calculations with different NOE calibrations: New criteria for structure selection applied to Sandostatin and BPTI

  • 50 Accesses

  • 48 Citations

Summary

To generate structures efficiently, a version of the distance geometry program DIANA for a parallel computer was developed, new objective criteria for the selection of NMR solution structures are presented, and the influence of using different calibrations of NOE intensities on the final structures are described. The methods are applied to the structure determination of Sandostatin, a disulfide-bridge octapeptide, and to model calculations of BPTI. On an Alliant FX2800 computer using 10 processors in parallel, the calculations were done 9.2 times faster than with a single processor. Up to 7000 Sandostatin structures were calculated with distance and angular constraints. The procedure for selecting acceptable structures is based on the maximum values of pairwise RMSDs between structures. Suitable target function cut-offs are defined independent of the number of starting structures. The method allowed for an objective comparison of three groups of Sandostatin structures that were calculated from different sets of upper distance constraints which were derived from the same NOE intensity data using three empirical calibration curves. The number of converged structures and the target function values differed significantly among the three groups, but the structures were qualitatively and quantitatively very similar. The conformation is well determined in the cyclic region Cys2−Cys7 and adopts a β-turn centered at d-Trp4−Lys5. The criteria for structure selection were further tested with BPTI. Results obtained from sets of structures calculated with and without using the REDAC strategy are consistent and suggest that the structure selection method is objective and generally applicable.

This is a preview of subscription content, log in to check access.

References

  1. Bauer, W., Briner, U., Döpfner, W., Haller, R., Huguenin, R., Marbach, P., Petcher, T.J. and Pless, J. (1982) Life Sci., 31, 1133–1140.

  2. Berndt, K.D., Güntert, P., Orbons, L.P.M. and Wüthrich, K. (1992) J. Mol. Biol., 227, 757–775.

  3. Boelens, R., Koning, T.M.G., van der Marel, G.A., van Boom, J.H. and Kaptein, R. (1989) J. Magn. Reson., 82, 290–308.

  4. Borgias, B.A. and James, T.L. (1988) J. Magn. Reson., 79, 493–512.

  5. Borgias, B.A. and James, T.L. (1990) J. Magn. Reson., 87, 475–487.

  6. Braun, W., Bösch, C., Brown, L.R., Gō, N. and Wüthrich, K. (1981) Biochim. Biophys. Acta, 667, 377–396.

  7. Braun, W., Wider, G., Lee, K.H. and Wüthrich, K. (1983) J. Mol. Biol., 169, 921–948.

  8. Braun, W. and Gō, N. (1985) J. Mol. Biol., 186, 611–626.

  9. Braun, W., Wagner, G., Wörgötter, E., Vašák, M., Kägi, J.H.R. and Wüthrich, K. (1986) J. Mol. Biol., 187, 125–129.

  10. Braun, W. (1987) Q. Rev. Biophys., 19, 115–157.

  11. Brüschweiler, R., Blackledge, M. and Ernst, R.R. (1991) J. Biomol. NMR, 1, 3–11.

  12. Clore, G.M., Gronenborn, A.M., Brünger, A.T. and Karplus, M. (1985) J. Mol. Biol., 186, 435–455.

  13. Eccles, C., Güntert, P., Billeter, M. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 111–130.

  14. Güntert, P., Braun, W., Billeter, M. and Wüthrich, K. (1980) J. Am. Chem. Soc., 111, 3997–4004.

  15. Güntert, P. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 447–456.

  16. Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

  17. Havel, T.F., Kuntz, I.D. and Crippen, G.M. (1983) Bull. Math. Biol., 45, 665–720.

  18. Havel, T.F. and Wüthrich, K. (1984) Bull. Math. Biol., 46, 673–698.

  19. Havel, T.F. and Wüthrich, K. (1985) J. Mol. Biol., 182, 281–294.

  20. Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78.

  21. Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., Boelens, R. and van Gunsteren, W.F. (1985) J. Mol. Biol., 182, 179–182.

  22. Keepers, J.W. and James, T.L. (1984) J. Magn. Reson, 57, 404–426.

  23. Kline, A.D., Braun, W. and Wüthrich, K. (1988) J. Mol. Biol., 189, 377–382.

  24. Kohda, D. and Inagaki, F. (1992) 15th International Conference on Magnetic Resonance in Biological Systems, Jerusalem, Israel, abstr. P201.

  25. Kumar, A., Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

  26. Kuszewski, J., Nilges, M. and Brünger, A.T. (1992) J. Biomol. NMR, 2, 33–56.

  27. Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

  28. von Freyberg, B. and Braun, W. (1991) J. Comput. Chem., 12, 1065–1076.

  29. Widmer, H., Billeter, M. and Wüthrich, K. (1989) Proteins, 6, 357–371.

  30. Wüthrich, K., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

  31. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

  32. Wynants, C., van Binst, G. and Loosli, H.R. (1985a) Int. J. Pept. Protein Res., 25, 608–614.

  33. Wynants, C., van Binst, G. and Loosli, H.R. (1985b) Int. J. Pept. Protein Res., 25, 615–621.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Widmer, H., Widmer, A. & Braun, W. Extensive distance geometry calculations with different NOE calibrations: New criteria for structure selection applied to Sandostatin and BPTI. J Biomol NMR 3, 307–324 (1993). https://doi.org/10.1007/BF00212517

Download citation

Keywords

  • NMR structure determination
  • Structure selection
  • Distance geometry
  • NOE calibration
  • Sandostatin