Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Saxonian Granulite Massif: new aspects from geochronological studies

  • 159 Accesses

  • 52 Citations


Geochronological and geochemical analyses were carried out to determine the age of protolith formation and the timing of eclogite and granulite metamorphism of the Saxonian Granulite Massif (SGM). The age of the ultramafic protoliths of the garnet pyroxenites from the rim of the SGM has been determined to be Late Riphean (828 Ma), which together with geochemical and isotope data implies the extraction of the melt from an enriched mantle reservoir with an initial ɛ-Nd value of + 3.4. The minimum emplacement age of the mafic to felsic granulites has been dated at 470 Ma. The source material of these granulites reflects an enriched mantle reservoir with an ɛ-Nd value of + 2.6 (470 Ma).

Based on U/Pb zircon and Sm/Nd analyses (garnet kyanite, apatite, clinopyroxene, whole rock) the granulite metamorphism of the SGM probably occurred at 340 Ma. The time of the eclogite metamorphism for a garnet pyroxenite has been detected at 380 Ma using the Sm/Nd method on minerals (garnet — clinopyroxene—zircon) and whole rock.

Geochemical and isotope data clearly indicate a MORB- as well as an IAT-type source for the mafic granulites. During the time of the eclogite and granulite formation the oceanic basin closed in a subduction zone tectonic setting. A terrane or microcontinent model is consistent with these data and further explains the Ordovician, Silurian and Devonian high pressure events detected all over the European Hercynides. In this model, Gondwana derived microcontinents successively collided from the Early Ordovician onwards, causing subduction zone related high pressure metamorphism during closure of oceanic basins.

This is a preview of subscription content, log in to check access.


  1. Aftialion M, Bowes DR, Vrana S (1989) Early Carboniferous U-Pb ages for garnetiferous perpotassic granulites, Blansky les massif, Czechoslovakia. N Jb Miner Mh 4: 145–152

  2. Arnold A, Schabert HG (1973) Rb-Sr Altersbestimmungen an Granuliten der südlichen Böhmischen Masse in Oesterreich. Schweiz Mineral Petrogr Mitt 53: 61–78

  3. Behr HJ (1961) Beiträge zur petrographischen und tektonischen Analyse des Sächsischen Granulitgebirges Freib Forsch H C119: 146 pp

  4. Behr HJ (1978) Subfluenzprozesse im Grundgebirgs-Stockwerk Mitteleuropas. Z dt geol Ges 129: 283–318

  5. Bielicki KH, Haase G, Eidam J, Kemnitz H, Schust F, Gerstenberger H, Hiller H, Habedank M (1990) Pb-Pb and Rb-Sr dating of granitoids from the Lusatian block. Central Institute of Isotope and Radiation Research, Leipzig. In: Wand U, Strauch G (eds) 5th Meeting on Isotopes in Nature, part I: 23–46

  6. Brueckner HK, Medaris, LGJr, Bakun-Czubarow N (1989) Nd and Sr age and isotope patterns from Hercynian eclogites and garnet pyroxenites of the Bohemian Massif. Terra Abstr 1: 4

  7. Chernyshev IV, Zhuravlev DZ (1987) Sr-Nd isotope systematics and the age of granulites in the Saxonian massif (exemplified in the Hartmannsdorf region). In: Gerstenberger H (ed) Contributions to the Geology of the Saxonian Granulite Massif (Sächsische Granulitgebirge). ZFL-Mitt No 133: 63–72

  8. Dörr W, Franke W, Kramm U (1990) U-Pb-Daten von Zirkonen klastischer Sediment-Beiträge zur Entwicklung der Böhmischen Masse. In: Emmermann R, Giese P (eds) KTB Rep 89-3: 351

  9. Ducrot J, Lancelot JR, Marchand J (1983) Dadation U-Pb sur zircons de le éclogite de la Boric (Haut-Allier, France) et conséquences sur l'évolution ante-hercynienne de l'Europe occidentale. Earth Planet Sci Lett 62: 385–394

  10. Jäger E, Watznauer A (1969) Einige Rb-Sr-Datierungen an Granuliten des Sächsischen Granulitgebirges. Mber dt Akad Wiss 11, 5/6: 420–426

  11. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–90

  12. Gebauer D (1990) Isotope geology in eclogites. In: Carswell CA (ed) Eclogite Facies Rocks. Blackie, New York: 141–159

  13. Gebauer D (1991) Two Palaeozoic high-pressure events in a garnet-peridotite of Northern Bohemia, Czechoslovakia. Terra Abstr Suppl 6, Terra Nova 3: 5

  14. Gebauer D, Grünenfelder M (1978) U-Pb zircon and Rb-Sr mineral dating of eclogites and their country rocks. Example: Münchberg Gneiss Massif, NE Bavaria. Earth Planet Sci Lett 42: 35–44

  15. Gebauer D, Grünenfelder M (1982) Geological development of the Hercymian Belt of Europe based on age and origin of high-grade and high-pressure matic and ultramatic rocks. In: 5th Int Conf Geochron Cosmochron Isotope Geol, Japan, Nikko: 111–112

  16. Gebauer D, Quadt A, Williams IS, Compston W, Grünenfelder M (1988) Archean zircons in a retrograded, Caledonian eclogite of the Gotthard Massif. Schweiz Mineral Petrogr. Mitt 68: 485–490

  17. Gebauer D (1992) Two Palaeozoic high-pressure events in a garnet-periodite of Northern Bohemia, CSFR. Terra Nova Vol 3, Blackwell Sci Publ Oxford, p 5

  18. Gorokhov IM, Anderson EB, Melnikov NN, Mitrofanov FP, Kutyavin EP, Bizunok MB, Rocheva ON (1987) Geochronology of metamorphic rocks of the Sächsische Granulitgebirge (GDR). In: Gerstenberger H (ed) Contributions to the Geology of the Saxonian Granulite Massif (Sächsische Granulitgebirge.) ZFL-Mitt No 133: 43–62

  19. Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam-Deggendorf, Eastern Bavarian Germany. Contrib Mineral Petrol 45: 37–63

  20. Grew ES (1986) Petrogenesis of Kornerupine at Waldheim (Sachsen), German Democratic Republic. Z Geol Wiss 14, 5: 525–558

  21. Haase G, Gerstenberger H, Werner CD (1987) Rb-Sr geochronology of granites from the Sächsische Granulitgebirge. In: Gerstenberger H (ed) Contributions to the Geology of the Saxonian Granulite Massif (Sächsische Granulitgebirge). ZFL-Mitt No 133: 89–97

  22. Jäger E, Watznauer A (1969) Einige Rb/Sr Datierungen an Granuliten des Sächsischen Granulitgebirges. Mber Dtsch Wiss 11: 420–426

  23. Jahn BM (1990) Origin of granulites: geochemical constraints from Archean granulite facies rocks of the Sino-Korean craton, China. In: Vielzeuf D, Vidal Ph (eds) Granulites and Crystal Evolution, NATO ASI Ser. C, Vol 311: 471–492

  24. Köhler H, Müller-Sohnius D (1985) Rb-Sr Altersbestimmungen und Sr-Isotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum, NE Bayern). N Jb Miner Abh 151: 1–28

  25. Köhler H, Propach G, Troll G (1989) Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayrischen Grundgebirges. Beih Europ Miner Vol 1, No 2: 1–84

  26. Köppel V, Grunenfelder M (1979) Isotope geochemistry of lead. In: Jäger E, Hunziker JC (eds) Lectures in Isotope Geology. Springer, Berlin Heidelberg New York: pp 134–153

  27. Kröner A, Wendt J, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, CSFR. Contrib Mineral Petrol 99: 257–266

  28. Mezger K (1990) Geochronology in granulites. In: Vielzeuf D, Vidal Ph (eds) Granulites and Crustal Evolution. Kluwer, Dodrect: 451–470

  29. Mullen ED (1985) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet Sci Lett 62: 53–62

  30. Nägler ThF, Schäfer H-J, Gebauer D (1992) A Sm-Nd isochron on pelites 1 Ga in excess of their depositional age and its possible significance. Geochim Cosmochim Acta 56: 789–795

  31. Neumann W (1975) Zur erdgeschichtlichen Entwicklung des sächsischen Granulitgebirges. Zeitschr Angew Geol 21, 11: 543–547

  32. Neumann W (1984) Zur erdgeschichtlichen Entwicklung des sächsichen Granulitmassivs. Zeitschr Angew Geol 30, 4: 183–190

  33. Paquette JL, Peucat JJ, Bernard-Griffiths J, Marchand J (1985) Evidence for old Precambrian relics shown by U-Pb zircon dating of eclogites and associated rocks in the Hercynian belt of South Brittany. Chem Geol 52: 203–216

  34. Paquette JL, Menot RP, Peucat JJ (1989) REE, Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps). Earth Planet Sci Lett 96: 181–198

  35. Pearce JA (1975) Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 25: 41–67

  36. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69: 33–47

  37. Pearce JA (1982) Trace element characteristics of Lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites Wiley + Sons, Chichester: 525–548 pp

  38. Peucat JJ, Vidal Ph, Godard G, Postaire B (1982) Precambrian U-Pb zircon ages in eclogites and garnet-pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt? Earth Planet Sci Lett 60: 70–78

  39. Pin C, Sills JD (1986) Petrogenesis of layered gabbros and ultramafic rocks from Val Sesia, the Ivrea Zone, northwest Italy: trace element and isotope geochemistry. In: Dawson JB, Carswell Da, Hall J, Wedepohl KW (eds) The Nature of the Lower Continental Crust. Blackwell Oxford: 231–250

  40. Rötzler J (1992) Zur Petrogenese im Sächsischen Granulitgebirge, die pyroxenfreien Granulite und die Metapelite. Geotekt Forsch Bd 77: 1–100

  41. Schäfer HJ (1990) Geochronological investigations in the Ossa-Morena Zone, SW Spain. Diss ETH-Zürich, No 9246: 151 pp

  42. Söllner F (1978) Rb/Sr Altersbestimmungen an Gesteinen der Münchberger Gneismasse, NE-Bayern. Diss Univ München: 125 pp

  43. Söllner F, Köhler H, Müller-Sohnius D (1981 a) Rb/Sr-Altersbestimmungen an Gesteinen der Münchberger Gneismasse (MM), NE-Bayern-Teil 1, Gesamtgesteinsdatierungen. N Jb Miner Abh 141, 1: 90–112

  44. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26: 207–221

  45. Stille P, Tatsumoto M (1985) Precambrian tholeiitic-dacitic rocksuites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: evidence from Sm-Nd isotopes and rare earth elements. Contrib Mineral Petrol 89: 184–192

  46. Stosch HG, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif/Southern Germany. Earth Planet Sci Lett 99: 230–249

  47. Teufel S (1988) Vergleichende U-Pb- und Rb-Sr-Altersbestimmungen an Gesteinen des Uebergangsbereichs Saxothuringikum/Moldanubikum, NE-Bayern. Göttinger Arb Geol Paläont 35; 87 pp

  48. van Breemen O, Aftialon M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans Roy Soc Earth Sci 73: 89–108

  49. Vinogradev VI, Pokrosky BG (1987) O-18 and Rb-Sr Systematics in metamorphic rocks of the Saxonian granulite massif. In: Gerstenberger H (ed.) Contributions to the Geology of the Saxonian Granulite Massif (Sächsische Granulitgebirge). ZFL-Mitt No 133: 73–87

  50. von Drach V, Köhler H, (1989) Sr-Isotopensystematik und Nd-Modellalter an Gesteinen der KTB-Vorbohrung. In: Emmermann R, Giese P (eds) KTB Rep 89-3: 425

  51. von Drach V, Köhler H (1990) Sr- und Nd-Isotopensystematik an Proben der KTB-Vorbohrung. In: Emmermann R, Giese P (eds) KTB Rep 90-4: 548

  52. von Quadt A (1985) Geochronologische, geochemische und isotopengeochemische Untersuchungen an Gesteinen der Habach-Formation, der Scheelitlagerstätte und des angrenzenden Altkristallins im Felbertal (Land Salzburg). Diss. ETH-Zürich No 7928: 241 pp

  53. von Quadt A (1990) U-Pb zircon and Sm-Nd analyses on metabasites from the KTB pilote bore hole. In: Emmermann R, Giese P (eds) KTB Rep 90-4: 545

  54. von Quadt A (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (Eastern Alps). Contrib Mineral Petrol 110: 57–67

  55. von Quadt A, Gebauer D (1993) Sm-Nd and U-Pb dating of eclogites and granulites from the Oberpfalz, NE Bavaria, Germany. Isotope Geosc (Chem Geol) 108 pp, in press

  56. Watznauer A (1974) Beitrag zur Frage des zeitlichen Ablaufes der Granulitgenese (Sächsische Granulitgebirge). Krystalinikum 10: 181–192

  57. Watznauer A, Behr HJ, Mathe H (1971) Die Granulite Sachsens. Freib Forsch H C268: 91–111

  58. Weber K, Behr HJ (1983) Geodynamic interpretation of the MidEuropean Variscides. In: Martin H, Eder W (eds.) Intracontinental Fold Belts, Case Studies in the Variscan Belt of Europe and the Damara Belt in Namibia, Springer, Berlin Heidelberg New York, pp 427–469

  59. Wenzel T, Schmidt W Hengst M, Pilot J (1990) Geochronological study of some types of granitoids from the Elbe-valley-zone. Central Institute of Isotope and Radiation Research, Leipzig In: Wand U, Straub G (eds.) 5th Meeting Isotopes in Nature, part I: 203–216

  60. Werner CD (1981) Sächsisches Granulitgebirge — Saxonian Granulite Massif. — In: Kramer W, Werner CD (eds.) Optiolites and Initiates of Northern Border of the Bohemian Massif. Guide Book of Excursions in the German Democratic Republic and Polish People's Republic. Acad Sci GDR, Central Institute Phys Earth, Potsdam Freiberg, 1: 129–161

  61. Werner CD (1982) Zur Paragenese von Ultrabasiten im Saxothuringikums der DDR. Freib Forsch H C374: 17–28

  62. Werner CD, Schlichting M, Pilot J (1984) Sr-Isotopenuntersuchungen am sächsischen Granulit-Komplex. Freib Forsch H C389: 98–106

  63. Werner CD (1987) Saxonian Granulites-igneous or lithogenous. A contribution to the geochemical diagnosis of the original rocks in high-metamorphic complexes. In: Gerstenberger H (ed.) Contributions to the Geology of the Saxonian Granulite Massif (Sächsische Granulitgebirge). ZFL-Mitt. No 133: 221–250

  64. Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14: 493–571

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Quadt, A. The Saxonian Granulite Massif: new aspects from geochronological studies. Geol Rundsch 82, 516–530 (1993). https://doi.org/10.1007/BF00212414

Download citation

Key words

  • Saxonian Granulite Massif
  • Geochronology
  • Tectonic evolution
  • Geodynamics