Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The application of dimensional analysis to cosmology

How to make cosmology simple by using dimensional conspiracy

  • 70 Accesses

  • 5 Citations

Abstract

Cosmology as it is usually studied suffers from the problem that no criterion is known which isolates from the large class of models allowed by the equations of physics those few which are realized in Nature. To provide such a criterion, it is proposed that cosmology should be based on the study of models which are free of arbitrary scales or units, this condition being compatible with (but not identical with) the Cosmological Principle. Formally, the basis for scale-free cosmology can be expressed in a dimensional Conspiracy Hypothesis: The material parameters of a system (mass, density, pressure etc.), the constants of physics and the coordinates have realizable physical meanings only when they occur together in dimensionless combinations (η-numbers) in which the components may vary with time or place but in such a manner that the variations conspire to keep the η-numbers constant. The Conspiracy Hypothesis (CH) streamlines cosmology, simplifying it to the finding of a few dimensionless numbers. Applied to Einstein's general relativity, the CH yields a simple cosmological model consisting of static clusters of galaxies with inverse-square density profiles embedded in an expanding, homogeneous background. This model agrees well with the observed Universe insofar as the latter can be described by general relativity. The CH can also be applied to other theories of gravity, especially those in which the gravitational parameter G is variable, and can also in itself be taken as a basis for gravitational theory.

This is a preview of subscription content, log in to check access.

References

  1. Barenblatt, G. E. and Zel'dovich, Y. B.: 1972, Ann. Rev. Fluid Mech. 4, 285.

  2. Birkhoff, G.: 1950, Hydrodynamics, Princeton Univ. Press, Princeton, N.J..

  3. Canuto, V., Adams, P. J., Hsieh, S.-H., and Tsiang, E.: 1977, Phys. Rev. (Ser. 3) D16, 1643.

  4. Close, F. E.: 1979, Nature 278, 209.

  5. De Vaucouleurs, G.: 1970, Science 167, 1203.

  6. De Vaucouleurs, G.: 1971, Publ. Astron. Soc. Pacific 83, 113.

  7. Dirac, P. A. M.: 1938, Proc. Roy. Soc. London A165, 199.

  8. Dirac, P. A. M.: 1974, Proc. Roy. Soc. London A338, 439.

  9. Eddington, A. E.: 1924, The Mathematical Theory of Relativity, 2nd. ed., Cambridge Univ. Press, London.

  10. Einstein, A.: 1931, Berlin Sitz, (Deutsch Akad. Wiss., 16th. April), 235.

  11. Goldstein, H.: 1959, Classical Mechanics, Addison-Wesley, Reading, Mass.

  12. Gunn, J. E., and Tinsley, B.: 1975, Nature 257, 454.

  13. Harwit, M.: 1971, Bull. Astron. Inst. Czech. 22, 22.

  14. Henriksen, R. N. and Wesson, P. S.: 1978, Astrophys. Space Sci. 53, 429.

  15. Infeld, L. and Schild, A.: 1945, Phys. Rev. (Ser. 2) 68, 250.

  16. Infeld, L. and Schild, A.: 1946, Phys. Rev. (Ser. 2) 70, 410.

  17. Langhaar, H.: 1951, Dimensional Analysis and Theory of Models, J. Wiley, New York.

  18. Llewellyn-Smith, C. H.: 1972, Phys. Rep. 3C, 261.

  19. Maeder, A.: 1977, Astron. Astrophys. 56, 359.

  20. Marciano, W. and Pagels, H.: 1978, Phys. Rep. 36C, 137.

  21. McVittie, G. C.: 1965, General Relativity and Cosmology, 2nd. ed., Chapman and Hall, London.

  22. Milne, E. A.: 1935, Relativity, Gravitation and World Structure, Oxford Univ. Press, London.

  23. Mulvey, J.: 1979, Nature 278, 403.

  24. Podurets, M. A: 1964, Soviet Astron. (Astron. J.) 8, 19.

  25. Politzer, H. D.: 1974, Phys. Rep. 14C, 129.

  26. Ritter, R. C., Gillies, G. T., Rood, R. T., and Beams, J. W.: 1978, Nature 271, 228.

  27. Sedov, L. I.: 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, London.

  28. Tinsley, B.: 1977, Physics Today 30 (June), 32.

  29. Tinsley, B.: 1978, Nature 273, 208.

  30. VandenBerg, D. A.: 1976, Monthly Notices Roy. Astron. Soc. 176, 455.

  31. VandenBerg, D. A.: 1977, Monthly Notices Roy. Astron. Soc. 181, 695.

  32. Van den Berg, S.: 1977, Vistas Astron. 21, 71.

  33. Van Flandern, T. C.: 1975, Monthly Notices Roy. Astron. Soc. 170, 333.

  34. Weinberg, S.: 1974, Rev. Mod. Phys. 46, 255.

  35. Wesson, P. S.: 1978a, Astron. Astrophys. 68, 131.

  36. Wesson, P. S.: 1978b, Cosmology and Geophysics, A. Hilger, Bristol, U.K..

  37. Wesson, P. S.: 1979, Astron. Astrophys. 80, 296.

  38. Wesson, P. S.: 1980, Gravity, Particles, and Astrophysics, D. Reidel, Dordrecht, Holland.

  39. Weyl, H.: 1922, Space-Time-Matter, 4th. ed., Methuen, London (reprinted, 1952, Dover, New York).

  40. Wilkinson, D. H.: 1958, Phil Mag. (Ser. 8) 3, 582.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wesson, P.S. The application of dimensional analysis to cosmology. Space Sci Rev 27, 109–153 (1980). https://doi.org/10.1007/BF00212237

Download citation

Keywords

  • General Relativity
  • Material Parameter
  • Physical Meaning
  • Large Class
  • Cosmological Model