Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sensory input to growth stimulating neuroendocrine cells of Lymnaea stagnalis

Summary

Several environmental factors influence the growth of the basommatophoran freshwater snail Lymnaea stagnalis. Growth is hormonally controlled by 4 cerebral clusters of ca 50–75 peptidergic, neuroendocrine Light Green Cells (LGC). The present light, transmission, and scanning electron microscopic study shows that the LGC are synaptically contacted by a tentacle sensory system (TSS). The TSS consists of 2 types of primary sensory neurone, viz. ca 150 S1-cells and ca 50–100 S2-cells. A S1-cell has a non-ciliated dendrite and an axon branch that synaptically contacts the soma of a S2-cell. A S2-cell has a branching, ciliated dendrite. Probably, S1- and S2-cells have different sensory modalities and can integrate sensory information by intersensory interaction. The S2-axons run through the tentacular nerves, the cerebral ganglia, and the intercerebral commissure. In each ganglion S2-axons branch and form synaptic contacts on the axons and somata of the LGC and on glial cells that surround the LGC. In an LGC-cluster, 1–3 LGC-somata are particularly strongly innervated. Probably, the TSS is involved in the environmental control of growth in L. stagnalis.

This is a preview of subscription content, log in to check access.

References

  1. Alkon DL, Akaike T, Harrigan J (1978) Interaction of chemosensory, visual and statocyst pathways in Hermissenda crassicornis. J Gen Physiol 71:177–194

  2. Bannister LH (1965) The fine structure of the olfactory surface of teleostean fishes. Quart J Micr Sci 106:333–342

  3. Benjamin PR, Swindale NV, Slade CT (1976) Electrophysiology of identified neurosecretory neurones in the pond snail, Lymnaea stagnalis (L.). In: Salánki (ed) Neurobiology of invertebrates — Gastropoda brain. Akadémiai Kiadó, Budapest, pp 85–100

  4. Boer HH, Douma E, Koksma JMA (1968) Electron microscope study of neurosecretory cells and neurohaemal organs in the pond snail Lymnaea stagnalis. Symp Zool Soc Lond 22:237–256

  5. Boer HH, Schot LPC, Roubos EW, Maat A ter, Lodder JC, Reichelt D, Swaab DF (1979) ACTH-like immunoreactivity in two electrotonically coupled giant neurones in the pond snail Lymnaea stagnalis. Cell Tissue Res 202:231–240

  6. Bohlken S, Joosse J (1982) The effect of photoperiod on female reproductive activity and growth of the freshwater pulmonate snail Lymnaea stagnalis kept under laboratory breeding conditions. Int J Inv Reprod 4:213–222

  7. Brousse-Gaury P (1971a) Influences de stimuli externes sur le comportement neuro-endocrinien de blattes. I. Les organes sensoriels céphaliques, point de départ des réflexes neuro-endocriniens. Ann Sci Nat Zool 13:181–332

  8. Brousse-Gaury P (1971b) Influence de stimuli externes sur le comportement neuro-endocrinien de blattes. II. Histophysiologie des voies réflexes neuro-endocriniennes. Ann Sci Nat Zool 13:333–450

  9. Dellman HD, Rodríguez EM (1970) Herring bodies; an electron microscope study of local degeneration and regeneration of neurosecretory axons. Z Zellforsch 111:293–315

  10. Geraerts WPM (1976) Control of growth by the neurosecretory hormone of the Light Green Cells in the freshwater snail Lymnaea stagnalis. Gen Comp Endocrinol 29:61–71

  11. Hanström B (1925) Über die sogenannten Intelligenzsphären des Molluskengehirns und Innervation des Tentakels von Helix. Acta Zool 6:183–215

  12. Hökfelt T, Johansson O, Ljungsdahl Å, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521

  13. Hughes HPI (1970) A light and electron microscope study of some opisthobranch eyes. Z Zellforsch 106:79–98

  14. Iversen LL, Lee CM, Gilbert RF, Hunt S, Emson PC (1980) Regulation of neuropeptide release. Proc R Soc Lond 210:91–111

  15. Janse C, Swigchem H van (1975) Neurophysiological properties of primary touch sensitive neurones in the gastropod mollusc Lymnaea stagnalis (L.). J Comp Physiol 103:343–351

  16. Joosse J (1964) Dorsal bodies and dorsal neurosecretory cells of the cerebral ganglia of Lymnaea stagnalis L. Arch Néerl Zool 15:1–103

  17. Joosse J, Vlieger TA de, Roubos EW (in press) Nervous systems of lower animals as models, with particular reference to peptidergic neurones in gastropods. In: Buijs RM, Pévet P, Swaab DF (eds) Progr Brain Res Vol 55, Chemical Transmission in the Brain. Elsevier Biomedical Press, Amsterdam

  18. Lincoln DW (1974) Dynamics of oxytocin secretion. In: Knowles F, Vollrath L (eds) Neurosecretion — The final common pathway. Springer-Verlag, Berlin Heidelberg New York, pp 129–133

  19. Maat A ter (1979) Neuronal input on the ovulation hormone producing neuroendocrine Caudo-Dorsal Cells of the freshwater snail Lymnaea stagnalis. Proc Kon Ned Akad Wet C 82:333–342

  20. Maat A ter, Roubos EW, Lodder JC, Buma P (in press) Integration of synaptic input modulating pacemaker activity of electrotonically coupled neuroendocrine Caudo-Dorsal Cells in the pond snail. J Neurophysiol

  21. Maddrell SHP (1963) Excretion in the blood-sucking bug, Rhodnius prolixus Stal. 1. The control of diuresis. J Exp Biol 40:247–256

  22. McDonald SLC (1969) The biology of Lymnaea stagnalis L. (Gastropoda Pulmonata). Sterkiana 36:1–17

  23. Minnen J van, Reichelt D (1980) Effects of photoperiod on the activity of neurosecretory cells in the Lateral Lobes of the cerebral ganglia of the pond snail Lymnaea stagnalis, with particular reference to the Canopy Cell. Proc Kon Ned Akad Wet C 83:1–13

  24. Minnen J van, Reichelt D, Lodder JC (1979) An ultrastructural study of the neurosecretory Canopy Cell of the pond snail Lymnaea stagnalis (L.), with the use of the horseradish peroxidase tracer technique. Cell Tissue Res 204:453–462

  25. Murray PG (1973) The ultrastructure of taste buds. In: Friedmann I (ed) The ultrastructure of sensory organs. North Holland, American Elsevier Publ Comp, Amsterdam London New York, pp 1–84

  26. Nordmann JJ, Louis F, Morris SJ (1979) Purification of two structurally and morphologically distinct populations of rat neurohypophyseal secretory granules. Neuroscience 4:1367–1379

  27. Phillips DW (1979) Ultrastructure of sensory cells of the mantle tentacles of the gastropod Notoacmea scutum. Tissue Cell 11:623–632

  28. Roubos EW (1975) Regulation of neurosecretory activity in the freshwater pulmonate Lymnaea stagnalis (L.) with particular reference to the role of the eyes. Cell Tissue Res 160:291–314

  29. Roubos EW (in press) Intracellular and extracellular control of neuroendocrine activity in the freshwater snail Lymnaea stagnalis. In: Lofts B (ed) Advances in Comparative Endocrinology. Hong Kong University Press, Hong Kong

  30. Roubos EW, Moorer-van Delft CM (1979) Synaptology of the central nervous system of the freshwater snail Lymnaea stagnalis (L.), with particular reference to neurosecretion. Cell Tissue Res 198:217–235

  31. Roubos EW, Wal-Divendal RM van der (1980) Ultrastructural analysis of peptide-hormone release by exocytosis. Cell Tissue Res 207:267–275

  32. Roubos EW, Buma P (in press) Cellular mechanisms of neurohormone release in the snail Lymnaea stagnalis. In: Buijs RM, Pévet P, Swaab DF (eds) Progr Brain Res Vol 55, Chemical Transmission in the Brain. Elsevier Biomedical Press, Amsterdam

  33. Roubos EW, Boer HH, Schot LPC (1981) Peptidergic neurones and the control of neuroendocrine activity in the freshwater snail Lymnaea stagnalis (L.). In: Farner DS, Lederis K (eds) Neurosecretion — Molecules, Cells, Systems. Plenum Press, New York London, pp 119–127

  34. Roubos EW, Geraerts WPM, Boerrigter GH, Kampen GPJ van (1980) Control of the activities of the neurosecretory Light Green and Caudo-Dorsal Cells and of the endocrine Dorsal Bodies by the Lateral Lobes in the freshwater snail Lymnaea stagnalis. Gen Comp Endocrinol 40:446–454

  35. Scharrer B (1978) Peptidergic neurones: facts and trends. Gen Comp Endocrinol 34:50–62

  36. Scheerboom JEM (1978) The influence of food quantity and food quality on assimilation, body growth and egg production in the pond snail Lymnaea stagnalis (L.) with particular reference to the haemolymph glucose concentration. Proc Kon Ned Akad Wet C 81:184–197

  37. Schot LPC, Boer HH (1982) Immunocytochemical demonstration of peptidergic cells in the pond snail Lymnaea stagnalis with an antiserum to the molluscan cardioactive tetrapeptide FMRF-amide. Cell Tissue Res 225:347–354

  38. Schulz F (1938) Bau und Funktion der Sinneszellen in der Körperoberfläche von Helix pomatia. Morphol Ökol Tiere 33:555–581

  39. Steen WJ van der, Jager JC, Tiemersma D (1973) The influence of food quantity on feeding, reproduction and growth in the pond snail Lymnaea stagnalis (L.), with some methodological comments. Proc Kon Ned Akad Wet C 76:47–60

  40. Vlieger TA de, Roubos EW (1978) Morphological and electrophysiological aspects of the regulation of neurosecretory cell activity in the pond snail Lymnaea stagnalis. In: Gaillard PJ, Boer HH (eds) Comparative Endocrinology. Elsevier/North Holland Biomedical Press, Amsterdam New York Oxford, pp 317–322

  41. Vlieger TA de, Kits KS, Maat A ter, Lodder JC (1980) Morphology and electrophysiology of the ovulation hormone producing neuroendocrine cells of the freshwater snail Lymnaea stagnalis (L.). J Exp Biol 84:259–271

  42. Wendelaar Bonga SE (1970) Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis (L.). Z Zellforsch 108:190–224

  43. Zaitseva OV, Bocharova LS (1981) Sensory cells in the head skin of pond snails. Cell Tissue Res 220:797–807

  44. Zylstra U (1972) Distribution and ultrastructure of epidermal sensory cells in the freshwater snails Lymnaea stagnalis and Biomphalaria pfeifferi. Neth J Zool 22:283–298

Download references

Author information

Correspondence to Dr. Eric W. Roubos.

Additional information

The authors are greatly indebted to Prof. Dr. H.H. Boer for stimulating interest during the study and helpful comments during the preparation of the manuscript, and to Prof. Dr. J. Lever for critically reading the manuscript

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roubos, E.W., van der Wal-Divendal, R.M. Sensory input to growth stimulating neuroendocrine cells of Lymnaea stagnalis . Cell Tissue Res. 227, 371–386 (1982). https://doi.org/10.1007/BF00210892

Download citation

Key words

  • Tentacle sensory input system
  • Neuroendocrine control of growth
  • Ultrastructure
  • L. stagnalis