Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment

  • 158 Accesses

  • 63 Citations

Abstract

Detrended canonical coreespondence analysis (DCCA) was used to examine the relationships between diatom species distributions and environmental variables from 62 drainage lakes in the Adirondack region, New York (USA). The contribution of lakewater pH, Alm (monomeric Al), NH4, maximum depth, Mg, and DOC (dissolved organic carbon) were statistically significant in explaining the patterns of variation in the diatom species composition. Twenty-three and sixteen diatom taxa were identified as potential indicator species for pH and Alm, respectively (i.e. a taxon with a strong statistical relationship to the environmental variable of interest, a well defined optimum, and a narrow tolerance to the variable of interest). Using weighted-averaging regression and calibration, predictive models were developed to infer lakewater pH (r 2=0.91), Alm (r 2=0.83), DOC (dissolved organic carbon) (r 2=0.64), and ANC (acid neutralizing capacity; r 2=0.90). These variables are of key importance in understanding watershed acidification processes. These predictive models have been used in the PIRLA-II (Paleoecological Investigation of Recent Lake Acidification-II) project to answer policy-related questions concerning acidification, recovery, and fisheries loss.

This is a preview of subscription content, log in to check access.

References

  1. Baker, J. P., D. P. Bernard, S. W. Christensen & M. J. Sale, 1990. Biological effects of changes in surface water acidbase chemistry. State-of Science/Technology Report 13. National Acid Precipitation Program, Washington, D.C.

  2. Battarbee, R. W., 1973. A new method for the estimation of absolute microfossil numbers, with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.

  3. Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling (eds), 1990. Palaeolimnology and Lake Acidification. Phil. Trans. r. Soc. Lond. B 327: 223–445.

  4. Birks, H. J. B., S. Juggins & J. M. Line, 1990a. Lake surfacewater chemistry reconstructions from palaeolimnological data. In B. J.. Mason (ed.), The Surface Waters Acidification Programme. Cambridge University Press: 301–313

  5. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990b. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–278.

  6. Camburn, K. E., J. C. Kingston & D. F. Charles (eds), 1984–86. PIRLA Diatom Iconograph. Report No. 3. PIRLA Unpublished Report Series, 53 photographic plates, 1059 figures. Dept. of Biology, Indiana Univ., Bloomington, IN.

  7. Campbell, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. aquat. Sci. 42: 2034–2049.

  8. Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.

  9. Charles, D. F. & J. P. Smol, 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnol. Oceanogr. 33: 1451–1462.

  10. Charles, D. F. & J. P. Smol, 1990. The PIRLA II project: Regional assessment of lake acidification trends. Verh. int. Ver. Limnol. 24: 474–480.

  11. Charles, D. F. & D. R. Whitehead, 1986. The PIRLA Project: Paleoecological Investigation of Recent Lake Acidification. Hydrobiologia 143: 13–20.

  12. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead, & R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol. 3: 195–241.

  13. Cumming, B. F., J. P. Smol, J. C. Kingston, S. S. Dixit, A. J. Uutala & D. F. Charles, 1990. Paleolimnological variability. Appendix 1 In T. J. Sullivan, M. J. Small, J. C. Kingston, B. F. Cumming, S. S. Dixit, J. P. Smol, J. A. Bernert, D. R. Thomas & A. J. Uutala. Historical changes in surface water acid-base chemistry in response to acidic depostion. State-of Science/Technology Report 11. National Acid Precipitation Program, Washington, D.C.; A1-A6 pp.

  14. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Selle, 1992a. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Can. J. Fish. aquat. Sci. 49: 128–141.

  15. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1992b. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to measured environmental variables. J. Phycol. 28: 162–178.

  16. Cushing, E. J. & H. E. Wright Jr, 1965. Hand operated piston corers for lake sediments. Ecology 46: 380–384.

  17. Dixit, S. S., A. S. Dixit & J. P. Smol, 1991. Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.

  18. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.

  19. Driscoll, C. T. & R. M. Newton, 1985. Chemical characteristics of Adirondack lakes. Envir. Sci. Technol. 19: 1018–1024.

  20. Driscoll, C. T., R. M. Newton, C. P. Gubala, J. P. Baker & S. W. Christensen, 1991. Adirondack Mountains. In D. F. Charles (ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York.

  21. Gensemer, R. W., 1990. Role of aluminum and growth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var. americana (Bacillariophyceae). J. Phycol. 26: 250–258.

  22. Gensemer, R. W., 1991. The effect of pH and aluminum on the growth of the acidophilic diatom Asterionella ralfsii var. americana. Limnol. Oceanogr. 36: 123–131.

  23. Gensemer, R. W. & S. S. Kilham, 1984. Growth rates of five freshwater algae in well-buffered acidic media. Can. J. Fish. aquat. Sci. 41: 1240–1243.

  24. Gherini, S. A., R. A. Munson, E. Altwicker, R. April, C. Chen, N. Clesceri, C. Cronan, C. Driscoll, R. J. Johannes, R. Newton, N. Perers & C. Schofield, 1989. Regional Integrated Lake-Watershed Acidification Study (RILWAS): Summary of major findings. EPRI RP-2174–1. Electric Power Research Institute. Palo Alto, CA.

  25. Glew, J. R., 1989. A new trigger mechanism for sediment samplers. J. Paleolimnol. 2: 241–243.

  26. Hill, M. O., 1973. diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

  27. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis, and improved ordination technique. Vegetatio 42: 47–58.

  28. Isachsen, Y. W. & D. W. Fisher, 1990. Geologic map of New York, Adirondack sheet. State Education Department, University of the State of New York, Albany, NY.

  29. Kanciruk, P., J. M. Eilers, R. A. McCord, D. H. Landers, D. F. Brakke & R. A. Linthurst, 1986. Characteristics of lakes in the Eastern United States. Volume III. Data compendium of site characteristics and chemical variables. EPA/600/4–86/007. U.S. Environmental Protection Agency. Washington, DC; 439 pp.

  30. Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., Lond. B 327: 279–288.

  31. Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming & J. P. Smol, 1992. Assessing trends in fishery resources and lake water aluminum from paleolimnological analyses of siliceous algae. Can J. Fish aquat. Sci. 49: 116–127.

  32. Kretser, W., J. Gallagher & J. Nicolette, 1989. Adirondack Lakes Study 1984–1987: an evaluation of fish communities and water chemistry. Adirondack Lakes Survey Corporation, Ray Brook, NY; 437 pp.

  33. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, unpublished. WACALIB 3.10., University of Cambridge Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, U.K., Agricultural Mathematics Group, Wageningen, Box 100, 6700 AC Wageningen, The Netherlands, and Botanical Institute, University of Bergen, N-5007 Bergen, Norway.

  34. Linthurst, R. A., D. H. Landers, J. M. Eilers, D. F. Brakke, W. S. Overton, E. P. Meier & R. E. Crowe, 1986. Characteristics of Lakes in the Eastern United States. Volume 1. Population Descriptions and Physico-Chemical Relationships. EPA/600/4–86/700, U.S. Environmental Protection Agency, Washington, DC. 275 pp.

  35. Muniz, I. P. & H. Leivestad, 1980. Toxic effects of aluminum on the brown trout, Salmo trutta. In D. Drabløs & A. Tollan (eds.), Ecological impact of acid precipitation. SNSF Project, Oslo.

  36. Newton, R. M. & C. T. Driscoll, 1990. Classification of ALSC lakes. In Adirondack Lakes Survey: An Interpretive Analysis of Fish Communities and Water Chemistry, 1984–1987. Adirondack Lakes Survey Corporation, Ray Brook, New York: 2–70 to 2–116.

  37. Pillsbury, R. W. & J. C. Kingston, 1990. The pH-independent effects of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia 194: 225–233.

  38. Schofield, C. L., 1976. Acidification of Adirondack lakes by atmospheric precipitation. Extent and magnitude of the problem. Final Report, Project F-28-R. New York Department of Environmental Conservation, Albany, NY.

  39. Smith, A., 1990. The ecophysiology of epilithic diatom communities of acid lakes in Galloway, southwest Scotland. Phil. Trans. r. Soc., Lond. B 327: 251–256.

  40. Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.

  41. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.

  42. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Water Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry data-set. ENSIS Publishing, London, 86 pp.

  43. Sullivan, T. J., D. F. Charles, J. P. Smol, B. F. Cumming, A. R. Selle, D. R. Thomas, J. A. Bernert & S. S. Dixit, 1990. Quantification of changes in lakewater chemistry in response to acidic deposition. Nature 345: 54–58.

  44. Sullivan, T. J., R. S. Turner, D. F. Charles, B. F. Cumming, J. P. Smol, C. L. Schofield, C. T. Driscoll, H. J. B. Birks, A. J. Uutala, J. C. Kingston, S. S. Dixit, J. A. Bernert & P. F. Ryan, 1992. Use of Historical assessment for evaluation of process-based model projections of future environmental change: lake acidification in the Adirondack Mountains New York, U.S.A. Envir. Pollut. 77: 253–262.

  45. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1178.

  46. ter Braak, C. J. F., 1987a. Ordination. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 91–173.

  47. ter Braak, C. J. F., 1987b. Calibration. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 79–90.

  48. ter Braak, C. J. F., 1988a. CANOCO—A FORTRAN program for canonical community ordination by [partial detrended] [canonical] correspondence analysis, principal components analysis redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands. Technical Report LWA-88–02, Wageningen; 95 pp.

  49. ter Braak, C. J. F. 1988b. Partial canonical correspondence analyses. In H. H. Bock (ed.), Classification and related methods of data analysis. North Holland, Amsterdam; 551–558.

  50. ter Braak, C. J. F., 1990a. Update Notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands; 35 pp.

  51. ter Braak, C. J. F., 1990b. CANOCO-version 3.10. Unpublished Computer Program, Agricultural Mathematics Group, 6700 AC Wageningen, The Netherlands.

  52. ter Braak, C. J. F. & C. W. N. Looman, 1987. Regression. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds.), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 29–77.

  53. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dixit, S.S., Cumming, B.F., Birks, H.J.B. et al. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J Paleolimnol 8, 27–47 (1993). https://doi.org/10.1007/BF00210056

Download citation

Key words

  • Diatoms
  • Adirondack Park
  • detrended canonical correspondence analysis
  • canonical correspondence analysis
  • weighted-averaging
  • lake acidification
  • pH
  • monomeric aluminum
  • dissolved organic carbon