Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Paleolimnology of McNearney lake: an acidic lake in northern Michigan

Abstract

McNearney Lake is an acidic (pH=4.4) lake in the Upper Peninsula of Michigan with low acid neutralizing capacity (ANC=-38 μeq L-1) and high SO inf4 sup2- and aluminium concentrations. Oligotrophy is indicated by high Secchi transparency and by low chlorophyll a, total phosphorus, and total nitrogen concentrations. The lake water is currently acidic because base cations are supplied to the lake water at a low rate and because SO inf4 sup2- from atmospheric deposition was not appreciably retained by the lake sediments or watershed and was present in the water column.

This interdisciplinary paleolimnological study indicates that McNearney Lake is naturally acidic and has been so since at least 4000 years B.P., as determined from inferred-pH techniques based on contemporary diatom-pH relationships. Predicted pH values ranged from 4.7 to 5.0 over the 4000-year stratigraphy. Considerable shifts in species composition and abundance were observed in diatom stratigraphy, but present-day distributions indicate that all abundant taxa most frequently occur under acidic conditions, suggesting that factors other than pH are responsible for the shifts. The diatom-inferred pH technique as applied to McNearney Lake has too large an uncertainly and is not sensitive enough to determine the subtle recent changes in lakewater pH expected from changes in atmospheric deposition because: (1) McNearney Lake has the lowest pH in the contemporary diatom data set in the region and confidence intervals for pH predictions increase at the extremes of regressions; (2) other factors in addition to pH may be responsible for the diatom species distribution in the lake and in the entire northern Great Lakes region; (3) McNearney Lake has a well-buffered pH as a consequence of its low pH and high aluminium concentrations and is not expected to exhibit a large pH change as a result of changes in atmospheric deposition; and (4) atmospheric deposition in the region is modest and would not cause a pH shift large enough to be discernable in McNearney Lake.

Elevated atmospheric deposition is indicated in recent sediments by Pb, V, and polycyclic aromatic hydrocarbon accumulation rates and to a lesser extent by those of Cu and Zn; however, these accumulation rates are substantially lower than those observed for acidified lakes in the northeastern United States. Although atmospheric loadings of materials associated with fossil fuel combustion have recently increased to McNearney Lake and apparently are continuing, the present study of the diatom subfossil record does not indicate a distinct, recent acidification (pH decrease).

This is a preview of subscription content, log in to check access.

References

  1. AndersonR. F., S. L.Schiff & R. H.Hesslein, 1987. Determining sediment accumulation and mixing rates using 210Pb, 237Cs, and other tracers: problems due to post depositional mobility or coring artifacts. Can. J. Fish. Aquat. Sci. 44 (Suppl. 1) 44: 231–250.

  2. ApplebyP. G. & F.Oldfield, 1978. The calculation of 210Pb dates assuming constant rate supply of unsupported 210Pb to the sediment. Catena 5: 1–8.

  3. BattarbeeR. W., 1973. A new method for the estimation of absolute microfossil numbers with reference especially to diatoms. Limnol. Oceanogr. 18: 647–653.

  4. BattarbeeR. W., 1984. Diatom analysis and the acidification of lakes. Philos. Trans. R. Soc. London Ser. B 305: 451–477.

  5. Binford, M. W., in press. 210Pb dates and associated uncertainties for PIRLA project lake sediment cores. In D. F. Charles and D. R. Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification. Developments in Hydrobiology Series. Kluwer, Dordrecht, The Netherlands.

  6. BrezonikP. L., L. A.Baker & T. E.Perry, 1987. Mechanisms of alkalinity generation in acid-sensitive soft-water lakes. pp. 229–260. In: R. A.Hites and S. J.Eisenreich (eds.). Sources and Fates of Aquatic Pollutants. American Chemical Society, Washington, D.C.

  7. BuckleyD. E. & R. E.Cranston, 1971. Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicate. Chem. Geol. 7: 273–284.

  8. CadleS. H., J. M.Dasch & N. E.Grossnickle, 1984. Retention and release of chemical species by a northern Michigan snowpack. Wat. Air Soil Pollut. 22: 303–319.

  9. CamburnK. E. & J. C.Kingston, 1986. The genus Melosira from soft-water lakes with special reference to northern Michigan, Wisconsin, and Minnesota. In J. P.Smol, R. W.Battarbee, R. B.Davis & J.Meriläinen (eds.), Diatoms And Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 17–34.

  10. CamburnK. E., J. C.Kingston & D. F.Charles (eds.), 1984–1986. Paleolimnological Investigation of Recent Lake Acidification (PIRLA) Diatom Iconograph. PIRLA Unpublished Report Series, Re. No. 3. Department of Biology, Indiana University, Bloomington, IN. 53 pl.

  11. CarignanR. & A.Tessier, 1985. Zinc deposition in acid lakes: the role of diffusion. Science 228: 1524–1526.

  12. CharlesD. F., 1984. Recent pH history of Big Moose Lake (Adirondack Mountains, New York, U.S.A.) inferred from sediment diatom assemblages. Ver. Theor. Angew. Limnol. Verh. 22: 559–566.

  13. CharlesD. F. & S. A.Norton, 1984. Paleolimnological evidence for trends in atmospheric deposition of acids and metals. In: Acid Deposition Long-Term Trends. National Research Council. National Academy Press, Washington, D.C.: 335–431.

  14. CharlesD. F., D. R.Whitehead, D. R.Engstrom, B.Fry, R. A.Hites, S. A.Norton, J. S.Owen, L. A.Roll, S. C.Schindler, J. P.Smol, A. J.Uutala, J. R.White & R. J.Wise, 1987. Paleolimnological evidence for recent acidification of Big Moose Lake, Adirondack Mountains, N.Y. (USA). Biogeochemistry 3: 267–296.

  15. ChewH., L. M.Johnston, D.Craig & K.Inch. 1988. Aluminum concentration of groundwater: spring melt in Chalk River and Turkey Lakes watersheds—Preliminary results. Can. J. Fish. Aquat. Sci. 45 (Suppl. 1): 66–71.

  16. CookR. B., 1986. Collection and analysis of water samples: northern Great Lakes States. In D. F.Charles and D. R.Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description. Electric Power Research Institute, Palo Alto, CA: 16–26–16–28.

  17. Cook, R. B. & H. I. Jager, in press. Upper Midwest: the effects of acidic deposition on lakes. In D. F. Charles (ed.), Acid Precipitation and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York.

  18. CookR. B., C. A.Kelley, J. C.Kingston & R. G.KreisJr. 1987. The chemical limnology of soft water lakes in the Upper Midwest. Biogeochemistry 4: 97–114.

  19. CookR. B., C. A.Kelly, D. W.Schindler & M. A.Turner, 1986. Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnol. Oceanogr. 31: 134–148.

  20. DavisM. B., 1967. Late-glacial climate in northern United States: a comparison of New England and the Great Lakes Region. In E. F.Cushing and H. E.WrightJr. (eds.), Quaternary Paleoecology. Proceedings of the 7th Congress of the International Society of Quaternary Research, Yale University Press, New Haven, CT: 11–44.

  21. DavisM. B., 1983. Holocene vegetation history of the eastern United States. In: H. E.WrightJr. (ed.) Late-Quaternary Environments of the United States. Vol. 2. The Holocene. University of Minnesota Press, Minneapolis: 166–181.

  22. DavisR. B., D. S.Anderson & F.Berge, 1985. Paleolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature 316: 436–438.

  23. DavisR. B. & R. W.Doyle, 1969. A piston corer for upper sediment in lakes. Limnol. Oceanogr. 14: 643–648.

  24. DavisR. B., C. R.Hess, S. A.Norton, D. W.Hanson, K. D.Hoagland & D. S.Anderson, 1984. 137Cs and 210Pb dating of sediments from softwater lakes in New England (U.S.A.) and Scandinavia, a failure of 137Cs dating. Chem. Geol. 44: 151–185.

  25. DickmanM. D. and H. G.Thode, 1985. The rate of lake acidification in four lakes north of Lake Superior and its relationship to downcore sulphur isotope ratios. Wat. Air Soil Pollut. 26: 233–253.

  26. DouganW. K. & A. L.Wilson, 1974. The absorptiometric determination of aluminum in water. Analyst 99: 413–430.

  27. DriscollC. T., J. P.Baker, J. J.Bisogni & C. L.Schofield, 1984. Aluminum speciation in dilute acidified surface waters of the Adirondack region of new York state. In O. R.Bricker (ed.), Acid Precipitation: Geological Aspects. Butterworth, Boston, MA: 55–75.

  28. DriscollC. T. & J. J.Bisogni, 1984. Weak acid-weak base systems in dilute acidified lakes and streams of the Adirondack region of New York state. In J. L.Schnoor (ed.), Modeling of Total Acid Precipitation Impacts. Butterworth, Boston, MA: 53–72.

  29. EakinsJ. D. & R. T.Morrison, 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int. J. Appl. Radiat. Isot. 29: 531–536.

  30. EilersJ. M., G. E.Glass, K. E.Webster & J. A.Rogalla, 1983. Hydrologic control of lake susceptibility to acidification. Can. J. Fish. Aquat. Sci. 40: 1896–1904.

  31. EilersJ. M., D. F.Brakke & D. H.Landers, 1988. Chemical and physical characteristics of lakes in the Upper Midwest, United States. Envir. Sci. Technol. 22: 164–172.

  32. Eilers, J. M., G. E. Glass, A. K. Pollack & J. A. Sorenson. Changes in conductivity, alkalinity, calcium, and pH during a fifty-year period in selectd northern Wisconsin lakes. Can. J. Fish. Aquat. Sci., in press.

  33. FryB., 1986a. Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York. Biogeochemistry 2: 329–343.

  34. FryB., 1986b. Stable sulfur isotope methods. In D. F.Charles and D. R.Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description, Electric Power Research Institute, Palo Alto, CA: 15–1–15–2.

  35. FryB., R. S.Scalan, J. K.Winters & P. L.Parker, 1982. Sulphur uptake by salt grasses, mangroves, and seagrasses in anaerobic sediments. Geochim. Cosmochim. Acta 46: 1121–1124.

  36. FurlongE. T., L. R.Cessar & R. A.Hites, 1987. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes. Geochim. Cosmochim. Acta 51: 2965–2975.

  37. Futyma, R. P., 1982. Postglacial vegetation of eastern Upper Michigan. Ph. D. dissertation. University of Michigan, Ann Arbor, MI.

  38. GallowayJ. N., G. E.Likens & M. E.Hawley, 1984. Acid precipitation: natural versus anthropogenic components. Science 226: 829–831.

  39. GlassG. E. & O. L.Loucks, 1986. Implications of a gradient in acid and ion deposition across northern Graet Lakes states. Envir. Sci. Technol. 20: 35–43.

  40. GschwendP. M. & R. A.Hites, 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45: 2359–2367.

  41. HenriksenA., 1982. Changes in base cation concentrations due to freshwater acidification. Acid Rain Research Report 1/1982. Interim Report. Norwegian Institute for Water Research, Oslo, Norway.

  42. HitesR. A., 1981. Sources and fates of atmospheric polycyclic hydrocarbons. Am. Chem. Soc. Symp. Ser. 167: 187–196.

  43. HitesR. A., R. E.LaFlamme & J. W.Farrington, 1977. Polycyclic aromatic hydrocarbons in recent sediments: the historical record. Science 98: 829–31.

  44. HongveD., 1972. En bunnhenter som er lett a lage. Fauna 25: 281–283.

  45. HusarR. B., 1986. Emissions of sulfur dioxide and nitrogen oxides and trends for eastern North America. In Acid deposition: long-term trends. National Research Council. National Academy Press, Washington, DC: 48–92.

  46. Husar, R. B., in press. Historical trends of SOx and NOx deposition. In D. F. Charles (ed.), Acid Precipitation and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York.

  47. HustedtF., 1939. Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition III. Die ökologischen Faktorin und ihr Einfluss auf die Diatomeenflora. Arch. Hydrobiol. Suppl. 16: 274–394.

  48. JeffriesD. S., R. G.Semkin, R.Neureuther & M.Seymour, 1988. Ion mass budgets for lakes in the Turkey Lakes watershed. Can. J. Fish. Aquat. Sci. 45 (Suppl. 1): 47–58.

  49. KempA. L. W., C. I.Dell, and N. S.Harper, 1978. Sedimentation rates and a sediment budget for Lake Superior. J. Great Lakes Res. 4: 276–287.

  50. KempA. L. W. & N. S.Harper, 1977. Sedimentation rates in Lake Huron and Georgian Bay. J. Great Lakes Res. 4: 276–287.

  51. KingG. A., 1985. Disturbance history of ten Upper Midwest watersheds: ecological analyses of terrestrial plants at NGLS paleoecology sites. Paleoecological Investigation of Recent Lake Acidification. Unpublished Report Series. Rep. No 2. Department of Biology, Indiana University, Bloomington, IN, 72 p.

  52. KingstonJ. C., 1986. Coring equipent and procedures used in the northern Great Lakes States. In D. F.Charles and D. R.Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description. Electric Power Research Institute, Palo Alto, CA: 3–14–3–15.

  53. KingstonJ. C., K. E.Camburn & R. G.KreisJr., 1986. Diatom analysis methods used for the Northern Great Lakes. In D. F.Charles and D. R.Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description. Electric Power Research Institute, Palo Alto, CA. pp. 6–29–6–30.

  54. Kingston, J. C., K. E. Camburn & R. G. Kreis, Jr. & R. B. Cook, in press-a. Diatom association and distribution in softwater lakes of Minnesota, Wisconsin, and Michigan. In D. F. Charles and D. R. Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Interim Report. Electric Power Research Institute, Palo Alto, CA.

  55. Kingston, J. C., R. B. Cook, R. G. Kreis, Jr., K. E. Camburn, S. A. Norton, P. R. Sweets, M. W. Binford, M. J. Mitchell, S. C. Schindler, L. C. K. Shane & G. A. King, in press-b. Paleoecological investigation of recent lake acidification in the northern Great Lakes states. In: D. F. Charles and D. R. Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification. Developments in Hydrobiologie Series. Kluwer, Dordrecht, The Netherlands.

  56. Kipphut, G. W., 1978. An investigation of sedimentary processes in lakes. Ph. D. Dissertation, Columbia University, New York, 180 p.

  57. KramerJ. & A.Tessier, 1982. Acidification of aquatic systems: A critique of chemical approaches. Envir. Sci. Technol. 16: 606A-615A.

  58. Kreis, R. G., Jr., in press. Sources and estimates of variability associated with paleolimnological analyses of PIRLA sediment cores. In D. F. Charles and D. R. Whitehead (eds.). Paleoecological Investigation of Recent Lake Acidification. Developments in Hydrobiology Series. Kluwer, Dordrecht, The Netherlands.

  59. Kreis, R. G., Jr., J. C. Kingston, K. E. Camburn & R. B. Cook, in press. Diatom-pH relationships in the northern Great lakes region for predicting past lake acidity. In D. F. Charles and D. R. Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification: Interim Report. Electric Power Reserach Institute, Palo Alto, CA.

  60. LandersD. H., M. B.David & M. J.Mitchell, 1983. Analysis of organic and inorganic sulfur constituents in sediments, soils, and water. Int. J. Anal. Chem. 14: 245–256.

  61. LinJ. C., J. L.Schnoor & G. E.Glass, 1987. Ion budgets in seepage lakes. In R. A.Hites and S. A.Eisenreich (eds.), Sources and Fates of Aquatic Pollutants. Am. Chem. Soc., Washington, DC: 209–227.

  62. LorenzenC. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

  63. MaherL. J.Jr. 1972. Monograms for computing 0.95 confidence limits of pollen data. Review of Paleobotany and Palynology 13: 85–93.

  64. McVeetyB. D. & R. A.Hites, 1988. Atmospheric deposition of PAH to Siskiwit Lake, Isle Royale: a mass balance approach. Atmos. Envir. 22: 511–536.

  65. MitchellM. J., D. H.Landers, D. J.Brodowski, G. B.Lawrence & M. B.David, 1984. Organic and inorganic sulfur constituents of the sediments of three New York lakes: effects of site, sediment depth, and season. Wat. Air Soil Pollut. 21: 231–245.

  66. Mitchell, M. J., J. S. Owen & S. C. Schindler, in press. Factors affecting sulfur incorporation into lake sediments: paleoecological implications. In D. F. Charles and D. R. Whitehead (eds.), Paleoecological Investigation of Recent Lake Acidification. Developments in Hydrobiology Series. Kluwer, Dordrecht, The Netherlands.

  67. MitchellM. J., S. C.Schindler, J. S.Owen & S. A.Norton, 1988. Comparison of sulfur concentrations within lake sediment profiles. Hydrobiologia 157: 219–229.

  68. National Research Council (NRC), 1986. Acid deposition: long-term trends. National Academy Press, Washington, DC, 506 p.

  69. NriaguJ. O. & R. D.Coker, 1978. Isotopic composition of sulfur in precipitation within the Great Lake Basin. Tellus 30: 365–375.

  70. NriaguJ. O., D. A.Holdway & R. D.Coker, 1987. Biogenic sulfur and the acidity of rainfall in remote areas of Canada. Science 237: 1189–1192.

  71. NriaguJ. O. & Y. K.Soon, 1985. Distribution and isotopic composition of sulfur in lake sediments of Northern Ontario. Geochim. Cosmochim. Acta 49: 823–834.

  72. OwenJ. S. & M. J.Mitchell, 1989. Sulfur biogeochemistry of an acidic lake in the Adirondack Region of New York, pp. 59–68. In: S. S.Rao (ed.). Acid Stess and Aquatic Microbial Interactions. CRS press. Boca Raton, Florida.

  73. Pollman, C. D. & D. E. Canfield, Jr., in press. Florida: a case study of hydrologic and biogeochemical controls on seepage lake chemistry. In D. F. Charles (ed.), Acid Deposition and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York.

  74. RappG.Jr., B. W.Liukkonen, J. D.Allert, J. A.Sorenson, G. E.Glass & O. L.Loucks, 1987. Geologic and atmospheric input factors affecting watershed chemistry in Upper Michigan. Envir. Geol. Water Sci. 9: 155–171.

  75. RappG.Jr., J. D.Allert, B. W.Liukkonen, J. A.Ilse, O. L.Loucks & G. E.Glass, 1985. Acid deposition and watershed characteristics in relation to lake chemistry in northeastern Minnesota. Envir. Int. 11: 425–440.

  76. RenbergI. & T.Hellberg, 1982. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Anbio 11: 30–33.

  77. RobbinsJ. A. & D. N.Edgington, 1975. Determination of recent sedimentation rates in Lake Michigan using lead-210 and cesium-137. Geochim. Cosmochim. Acta 39: 284–304.

  78. RuddJ. W. M., C. A.Kelly, V. St.Louis, R. H.Hesslein, A.Furutani & M. H.Holoka, 1986. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31: 1267–1280.

  79. SAS, 1987. SAS Statistical Software, Release 6.03. SAS Institute, Cary, NC.

  80. SchnoorJ. L., N. P.Nikolaidis & G. E.Glass, 1986. Lake resources at risk to acidic deposition in the Upper Midwest. J. Wat. Pollut. Control Assoc. 58: 139–148.

  81. ShaneL. C. K., 1986. Northern Great Lakes states pollen and charoal data. Paleoecological Investigation of Recent Lake Acidification, Unpublished Report Series, Rep. No. 9. Department of Biology, Indiana University, Bloomington, 127 p.

  82. StaintonM. D., M. J.Capel & F. A. J.Armstrong, 1977. The chemical analysis of fresh water. Miscellaneous Special Publication 25, 2nd edition. Freshwater Institute, Winnipeg, Canada, 119 p.

  83. Stevenson, A. C., H. J. Birks, R. J. Flower & R. W. Battarbee, in press. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio.

  84. StricklandJ. D. R. & T. R.Parsons, 1972. A practical handbook of sea water analysis. Fisheries Research Board of Canada Bulletin 167, 2nd edition. Fisheries Research Board, Ottawa, Canada, 310 p.

  85. StummW. & J. J.Morgan, 1980. Aquatic Chemistry. 2nd ed. Wiley-Interscience, NY. 780 p.

  86. SugimuraY. & Y.Suzuki. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry 24: 105–131.

  87. TalbotR. W. & A. W.Andren, 1984. Seasonal variations of 210Pb and 210Po concentrations in an oligotrophic lake. Geochim. Cosmochim. Acta 48: 2053–2063.

  88. terBraakC. J. F. & I. C.Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Pres. 18: 271–317.

  89. TolonenK. & T.Jaakkola. 1983. History of lake acidification and air pollution studied in sediments of south Finland. Ann. Bot. Fenn. 20: 57–78.

  90. vanDamH., G.Suurmond & C. J. F.terBraak, 1981. Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia 83: 425–459.

  91. WebbR. S. & T.WebbIII, 1988. Rates of sediment accumulation in pollen cores from small lakes and mires of eastern North America. Quat. Res. 30: 284–297.

  92. WhiteJ. R. & C. T.Driscoll, 1987. Zinc cycling in an acidic Adirondack lake. Envir. Sci. Technol. 21: 211–216.

  93. WhiteheadD. R., D. F.Charles, S. E.Reed, S. T.Jackson & M. C.Sheehan, 1986. Late-glacial and Holocene acidity changes in Adirondack (N.Y.) lakes. In J. P.Smol, R. W.Battarbee, R. B.Davis and J.Marilainen, (eds.), Diatoms and lake acidification. W. Junk, Dordrecht, The Netherlands: 251–274.

  94. WrightR. F., 1983. Predicting acidification of North American lakes. Acid Rain Research Report. 4/1983. Norwegian Institute for Water Research, Olso, Norway, 165 p.

Download references

Author information

Additional information

Order of the first two authors is alphabetical

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cook, R.B., Kreis, R.G., Kingston, J.C. et al. Paleolimnology of McNearney lake: an acidic lake in northern Michigan. J Paleolimnol 3, 13–34 (1990). https://doi.org/10.1007/BF00209297

Download citation

Key words

  • paleolimnology
  • diatoms
  • diatom-inferred pH
  • trace metals
  • sulfur
  • lakewater chemistry
  • seepage lake