Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Regional cerebral blood volume of intracranial tumors determined by MRI

  • 28 Accesses

  • 2 Citations

Abstract

The aim of this study was to characterize intracranial tumors based on MR measurements of regional cerebral blood volume. In 8 patients without intracranial pathology and 42 patients with intracranial tumors a T2*-weighted image series was acquired during bolus injection of gadolinium-DTPA, and regional cerebral blood volume maps were calculated. The regional cerebral blood volume index (rCBVi) of vital tumor was expressed in percent of the value measured in contralateral gray matter. In extra-axial tumors (meningiomas) rCBVi was higher (124 ± 110%), and in low-grade intra axial tumors rCBVi was lower (79 ± 65%), than in contralateral cortex. In malignant intra-axial tumors the distribution of rCBV was heterogenous: high in vital tumor (glioblastomas: rCBVi = 165 ± 85%; metastases: rCBVi = 106 ± 79%), but low in necrosis (rCBVi = 33% of contralateral white matter) and edema (rCBVi = 53% of contralateral white matter). rCBVi was highest in arteriovenous malformations (1053 ± 584% of contralateral gray matter). We conclude that the regional cerebral blood volume distribution is useful to characterize intracranial tumors, although the large biological variability of individual tumor entities indicates limitations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Haase A, Matthaei D, Hänicke W, Frahm J (1986) Dynamic digital subtraction imaging using fast low-angle shot MR movie sequences. Radiology 160: 537–541

  2. 2.

    Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 6: 164–174

  3. 3.

    Fisel CR, Ackerman JL, Buxton RB, Garrido L, Billiveau JW, Rosen BR, Brady TJ (1991) MR contrast due to microscopically heterogenous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–347

  4. 4.

    Rosen BR, Belliveau JW, Aronen AJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weisskopf RM, Cohen MS, Hochberg FH, Brady TJ (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22: 293–299

  5. 5.

    Edelman RR4, Mattle HP, Atkinson DJ, Hill T, Finn JP, Mayman C, Ronthal M, Hoogewoud HM, Kleefield J (1990) Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiology 176: 211–222

  6. 6.

    Böck JC, Sander B, Hierholzer J, Cordes M, Haustein J, Schörner W, Felix R (1992) Regionale Gehirndurchblutung bei Infarktpatienten: Schnelle dynamische T2*-gewichtete MRT nach Gadolinium-DTPA Bolusinjektion. Fortschr Röntgenstr 156: 382–387

  7. 7.

    Gückel F, Wentz KU, Jaschke W, Röther J, Loose R, Deimling M, Georgi M (1992) MR-tomographische Untersuchungen zur zerebralen Durchblutung: Methodische Grundlagen und erste klinische Erfahrungen mit T2*-gewichtete Gradientenecho-Sequenzen und KM-Grabe im Bolus. Fortschr Röntgenstr 156: 212–217

  8. 8.

    Weisskoff RM, Chesler D, Boxerman JL, Rossen BR (1993) Pitfalls in MR measurements of tissue blod flow with intravascular tracers: Which mean transit time? Magn Reson Med 29: 553–559

  9. 9.

    Böck JC, Sanders B, Hierholzer J, Haustein J, Scholz M, Radke KH, Schörner W, Lanksch W, Felix R (1992) Regionale Durchblutung bei intrakraniellen Tumoren: Vergleich der HMPAOSPECT mit einem neueren magnetresonanztomographischen Verfahren. Fortschr Röntgenstr 157: 378–383

  10. 10.

    Zierler KL (1965) Equations for measuring blood flow by external monitoring of radiosotopes. Circ Res 16: 309–321

  11. 11.

    Lassen NA (1984) Cerebral transit of an intravascular tracer many allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 4: 633–634

  12. 12.

    Nilsson BW, Rikner G, Wolgast M (1977) On the theory of an intravenous isotope method for cerebral blood flow measurements. Scand J Clin Lab Invest 37: 195–200

  13. 13.

    Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14: 538–546

  14. 14.

    Thompson HK, Starmer CF, Whalen RE, McIntosh HD (1964) Indicator transit time considered as a gamma variate. Circ Res 14: 502–515

  15. 15.

    Ter-Pogossian NM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Sem Nucl Med 15: 377–394

  16. 16.

    Lammertsma AA, Wise RJS, Cox TCS, Thomas DGT, Jones T (1985) Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumors and surrounding oedematous tissue. Br J Radiol 58; 725–734

  17. 17.

    Tyler JL, Diksic M, Villemure JG, Evans AC, Meyer E, Yamamoto YL, Feindel (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28: 1123–1133

  18. 18.

    Mineura K, Yasuda T, Kowada M, Ogawa T, Shishido F, Uemura K (1987) Positron emission tomographic evaluation of radiochemotherapeutic effect on regional cerebral hemocirculation and metabolism in patients with gliomas. J Neurooncol 5: 277–285

  19. 19.

    Ogawa T, Uemura K, Shishido F, Yamaguchi T, Murakami M, Inugami A, Kanno I, Sasaki H, Kato T, Hirata K, Kowada M, Mineura K, Yasuda T (1988) Changes of cerebral blood flow, and oxygen and glucose metabolism following radiochemotheraphy of gliomas: A PET study. J Comput Assist Tomogr 12: 290–297

Download references

Author information

Additional information

Correspondence to: J. C. Böck

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böck, J.C., Wlodarczyk, W., Sander, B. et al. Regional cerebral blood volume of intracranial tumors determined by MRI. Eur. Radiol. 5, 528–533 (1995). https://doi.org/10.1007/BF00208347

Download citation

Key words

  • MR
  • Perfusion study
  • Brain
  • Necrosis
  • Edema
  • Neoplasms