Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stable isotopic compositions of sulfur in PIRLA sediment cores

  • 66 Accesses

  • 4 Citations

Abstract

Stable isotopic compositions of total sedimentary sulfur were determined for cores from eight of the PIRLA study lakes. Preindustrial sulfur deposited prior to 1800 had roughly constant isotopic compositions within a 1–2‰ range in each core. In more recent sediments, large 5–10‰ decreases in 34S content occurred and likely resulted from the addition of anthropogenic sulfur. These isotopic changes began at the same time that lead concentrations increased in sediments, suggesting a close linkage between lead and sulfur deposition in the mid and late 1800s.

This is a preview of subscription content, log in to check access.

References

  1. Chambers, L. A. & P. A. Trudinger, 1979. Microbiological fractionation of stable sulfur isotopes. Geomicrobiol. J. 1: 249–293.

  2. Charles, D. F. & D. R. Whitehead, 1986. The PIRLA project: Paleoecological investigations of recent lake acidification. Hydrobiologia 143: 13–20.

  3. Dickman, M. D. & H. G. Thode, 1985. The rate of lake acidification in four lakes north of Lake Superior and its relationship to downcore sulphur ratios. Wat. Air Soil Pollut. 26: 233–253.

  4. Dickman, M. D., H. G. Thode, S. Rao & R. Anderson, 1988. Downcore sulphur isotope ratios and diatom inferred pH in an artificially acidified Canadian shield lake. Envir. Pollut. 49: 265–288.

  5. Fry, B., 1986. Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York. Biogeochemistry 2: 329–343.

  6. Fry, B., 1989. Sulfate fertilization and changes in sulfur stable isotopic compositions of lake sediments. In: P. W. Rundel, J. R. Ehleringer, K. A. Nagy (eds.), Stable Isotopes in Ecological Research. pp. 445–453 Springer Verlag.

  7. Hesslein, R. H., M. J. Capel & D. E. Fox, 1988. Sulfur isotopes in sulfate in the inputs and outputs of a Canadian Shield watershed. Biogeochemistry 5: 263–273.

  8. Holdren, G. R.Jr., T. M. Brunelle, G. Matisoff & M. Whalen, 1984. Timing the increase in atmospheric sulphur deposition in the Adirondack Mountains. Nature 311: 245–247.

  9. Ingvorsen, K., J. G. Zeikus & T. D. Brock, 1981. Dynamics of bacterial sulfate reduction in a eutrophic lake. Appl envir. Microbiol. 42: 1029–1036.

  10. Kling, G., B. Fry, A. E. Giblin & B. J. Peterson, In preparation. Sulfate reduction and sulfur loss from dimictic lakes during turnover events.

  11. Kreis, R. G.Jr., 1989. Variability study-interim results. Paleoecological investigation of recent lake acidification (PIRLA). 1983–1985. pp.IV 1–48. Electric Power Research Institute, EPRI-EN6526, Palo Alto, CA.

  12. Krouse, H. R., 1980. Sulphur isotopes in our environment. In: P. Fritz and J. Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, v. 1. The Terrestrial Environment, A. pp. 435–471. Elsevier, Amsterdam.

  13. Lovely, D. R. & M. J. klug, 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 50: 11–18.

  14. Malander, M. W., 1983. A stable isotopic study of waters within and surrounding the Boundary Waters Canoe Area Wilderness, Minnesota, M. S. thesis, Northern Illinois University, 88 pp.

  15. Mitchell, J. J., S. C. Schindler, J. S. Owen & S. A. Norton, 1988. Comparison of sulfur concentrations within lake sediment profiles. Hydrobiologia 157: 219–229.

  16. Mitchell, M. J., J. S. Owen & D. Schindler, 1990. Factors affecting sulfur incorporation into lake sediments: paleoecological implications. J. Paleolimnology (in press).

  17. Norton, S. A., R. W. Bienert Jr., M. W. Binford & J. S. Kahl, 1990. Stratigraphy of total metals in PIRLA cores. J. Paleolimnology (in press).

  18. Nriagu, J. O. & R. D. Coker, 1983. Sulfur in sediments chronicles past changes in lake acidification. Nature 303: 692–694.

  19. Nriagu, J. O. & Y. K. Soon, 1985. Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochim. Cosmochim. Acta 49: 823–834.

  20. OTA, 1984. Acid rain and transported air pollutants: Implications for public policy. OTA-0-204. (U.S. Congress Office of Technology and Assessment, Washington, D.C.). 323 pp.

  21. Rudd, J. W. M., C. A. Kelly, V. St. Louis, R. H. Hesslein, A. Furutani & M. H. Holoka, 1986a. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31: 1267–1280.

  22. Rudd, J. W. M., C. A. Kelly & A. Furutani, 1986b. The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr. 31: 1281–1291.

  23. Stuiver, M., 1967. The sulfur cycle in lake waters during thermal stratification. Geochim. Cosmochim. Acta 31: 2151–2167.

  24. Wetzel, R., 1983. Limnology. Saunders.

  25. White, J. R., C. P. Gubala, B. Fry, J. Owen & M. J. Mitchell, 1989. Sediment biogeochemistry of iron and sulfur in an acid lake. Geochim. Cosmochim. Acta. 53: 2547–2559.

  26. Wright, R. F., 1983. Predicting acidification of North American lakes. Norwegian Institute for Water Research 4/1983. Oslo, Norway. Report 0-81036, serial i477. 165 pp.

  27. Wright, R. F., B. J. Cosby, G. M. Hornberger & J. N. Galloway, 1986. Comparison of paleolimnological with MAGIC model reconstructions of water acidification. Wat. Air Soil Pollut. 30: 367–380.

Download references

Author information

Additional information

This is the ninth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D.F. Charles and D.R. Whitehead are guest editors for this series.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fry, B. Stable isotopic compositions of sulfur in PIRLA sediment cores. J Paleolimnol 4, 23–29 (1990). https://doi.org/10.1007/BF00208296

Download citation

Key words

  • sulfur
  • stable isotopes
  • cores
  • lakes
  • δ34S
  • acidification
  • paleolimnology