Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin

  • 125 Accesses

  • 26 Citations

Abstract

We report on a differential scanning calorimetry study of native purple membranes under the following solvent conditions: 50 mM carbonate-bicarbonate, 100 mM NaCl, pH 9.5 and 190 mM phosphate, pH 7.5. The calorimetric transitions for bacteriorhodopsin denaturation are highly scanning-rate dependent, which indicates that the thermal denaturation is under kinetic control. This result is confirmed by a spectrophotometric study on the kinetics of the thermal denaturation of this protein. The calorimetric data at pH 9.5 conform to the two-state irreversible model. Comments are made regarding the information obtainable from differential scanning calorimetry studies on bacteriorhodopsin denaturation and the effect of irreversibility on the stability of membrane proteins.

This is a preview of subscription content, log in to check access.

References

  1. Bertazzon A, Tian GH, Lamblin A, Tsong TY (1990) Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry 29:291–298

  2. Brandts JF, Hu CQ, Lin LN, Mas MT (1989) A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry 28:8588–8596

  3. Brouillette CG, McMichens RB, Stern LJ, Khorana HG (1989) Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles. Proteins 5:38–46

  4. Brouillette CG, Muccio DD, Finney TK (1987) pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry 26:7431–7438

  5. Cladera J, Galisteoa ML, Duñac M, Mateo PL, Padros E (1988) Thermal denaturation of deionized and native purple membranes. Biochim Biophys Acta 943:148–156

  6. Cladera J, Galisteo ML, Sabes M, Mateo PL, Padros E (1992) The role of retinal in the thermal stability of the purple membrane. Eur J Biochem 207:581–585

  7. Conejero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM (1991) Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry 30:2067–2072

  8. Edge V, Allewell NM, Sturtevant JM (1985) High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase. Biochemistry 24:5899–5906

  9. Freire E, van Osdol WW, Mayorga OL, Sanchez-Ruiz JM (1990) Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem 19:159–188

  10. Galisteo ML, Mateo PL, Sanchez-Ruiz JM (1991) Kinetic study on the irreversible thermal denaturation of phosphoglycerate kinase. Biochemistry 30:2061–2066

  11. Goins B, Freire E (1988) Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside G m1 . Biochemistry 27:2046–2052

  12. Hu CQ, Sturtevant JM (1987) Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry 26:178–182

  13. Jackson MB, Sturtevant JM (1978) Phase behavior of the purple membranes of Halobacterium halobium. Biochemistry 17:911–915

  14. Kahn TW Sturtevant JM, Engelman DM (1992) Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry 31:8829–8839

  15. Khorana HG (1988) Bacteriorhodopsin, a membrane protein that uses light to translocate protons. J Biol Chem 263:7439–7442

  16. Klibanov AM, Ahern TJ (1987) Thermal stability of proteins. In: Oxender DL, Fox CF (eds) Protein engineering, Alan R. Liss, New York, pp 213–218

  17. Kresheck GC, Lin CT, Williamson LN, Mason WR, Jang DJ, ElSayed MA (1990) The thermal stability of native, delipidated, deionized and regenerated bacteriorhodopsin. Photochem Photobiol 7:289–302

  18. Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

  19. Lysko KA, Carlson R, Taverna R, Snow J, Brandts JF (1981) Protein involvement in structural transitions of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 20:5570–5576

  20. Maglova L, Guleva D, Chekulaeva L, Atanasov B (1990) A calorimetric study of white and purple membranes. Biochim Biophys Acta 1017:217–220

  21. Manly SP, Matthews KS, Sturtevant JM (1985) Thermal denaturation of the core protein of lac repressor. Biochemistry 24:3842–3846

  22. Morin PE, Diggs D, Freire E (1990) Thermal stability of membranereconstituted yeast cytochrome c oxidase. Biochemistry 29:781–788

  23. Oesterhelt D, Hess B (1973) Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem 37:316–326

  24. Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

  25. Privalov PL (1980) Scanning microcalorimeters for studying macromolecules. Pure Appl Chem 52:479–497

  26. Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Prot Chem 35:1–104

  27. Privalov PL, Medved LV (1982) Domains in the fibrinogen molecule. J Mol Biol 159:665–683

  28. Rigell WR, Freire E (1987) Differential detergent solubility investigation of thermally induced transitions in cytochrome c oxidase. Biochemistry 26:4366–4371

  29. Ruiz-Sanz J, Ruiz-Cabello J, Mateo PL, Cortijo M (1992) The thermal transition in crude myelin proteolipid has lipid rather than protein origin. Eur Biophys J 21:71–76

  30. Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61:921–935

  31. Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652

  32. Sanchez-Ruiz JM, Mateo PL (1987) Differential scanning calorimetry of membrane proteins. Cell Biol Rev 11:15–45

Download references

Author information

Additional information

Correspondence to: J. M. Sanchez-Ruiz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galisteo, M.L., Sanchez-Ruiz, J.M. Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin. Eur Biophys J 22, 25–30 (1993). https://doi.org/10.1007/BF00205809

Download citation

Key words

  • Bacteriorhodopsin
  • Irreversible thermal denaturation
  • Differential scanning calorimetry