Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experiments on the water budget of densely and sparsely needled spruces [Picea abies (L.) Karst.] in a declining stand

Summary

The osmotic potentials of needles were compared from numerous trees that had been classified according to needle loss along an altitude profile. With the increasing degree of damage of the trees, the maximum and minimum values deviated more strongly above and below the common mean of all samples. The level of water content of the needles unequivocally reflected the vitality of the trees. Experiments covering a whole vegetation period were performed on a tree pair selected from a natural stand. They were designed to demonstrate differences in water balance between the “healthy” and “damaged” state of the trees. For the “damaged” tree, measurements of the water potentials of single needles showed a greater reduction of potential during the course of the day compared to the “healthy” tree. Recovery in the evenings was slower and often incomplete. The osmotic potentials of “damaged” and “healthy” shoots measured in individual needles also differed both predawn and especially after transpiration stress. Depending on weather and soil desiccation, the differences were more or less pronounced. In the “damaged” tree, the rises in potential after saturation of the twigs fell far short of the “healthy” tree. Reduction of water potential, osmotic potential and relative water content under comparable stress conditions suggest a reduced tolerance of drought by damaged trees. In the context of earlier experiments this result was ascribed to a lack of stomatal control, and long-term pollution effects were thus explained as a specific disturbance of hydroregulation.

This is a preview of subscription content, log in to check access.

References

  1. Boyer JS (1989) Water potential and plant metabolism: Comments on Dr. P. J. Kramers article “Changing concepts regarding plant water relations” Plant Cell Environ 11: 565–568 and Dr. J. B. Passiouras response pp 569–571. Plant Cell Environ 12: 213–216

  2. Brehmer U (1981) Licht- und Schattennadeln der Fichte [Picea abies (L.) Karst.] Beiträge zu Anatomie, Morphologie und Wasserhaushalt. Dissertation der Forstwissenschaftlichen Fakultät der Universität München

  3. Djalali RD (1986) Einfluß der Transpirationsrate auf den potentiellen osmotischen Wert bei Fichte [Picea abies (L.) Karst.]. Diplomarbeit der Forstwissenschaftlichen Fakultät der Universität München

  4. Gross K, Koch W (1991) Water relations of Picea abies. II. Determination of the apoplastic water content and other water relations parameter of needles by means of microcryoscopy and the pressure-volume analysis. Physiol Plant (in press)

  5. Gross K, Pham-Nguyen T, Unger H (1980) Tägliche und saisonale Änderungen des Wasserpotentials und seiner Komponenten in den Kronen von Fichten unterschiedlichen Alters. Allg ForstJagdztg 151:69–79

  6. Jarvis PG, Jarvis MS (1965) The water relations of tree seedlings V. Growth and root respiration in relation to osmotic potential of the root medium. In: Slavic B (ed) Water stress in plants. Junk, The Hague, pp 167–183

  7. Koch W (1985) Osmotic potential of spruce, fir and beech as a contribution to water budget in connection with forest decline (“Waldsterben”). Eur J For Pathol 15: 207–216

  8. Koch W, Maier-Maercker U (1986) Changes in the humidity response characteristics of Picea abies (L.) Karst, produced by fumigation with SO2. Eur J For Pathol 16: 329–341

  9. Kramer PJ (1988) Changing concepts regarding plant water relations. Plant Cell Environ 11: 565–568

  10. Maier-Maercker U (1986) Histological studies on the bundle sheath in needles of Picea abies (L.) Karst., diseased or fumigated with SO2. J For Pathol 16:352–359

  11. Maier-Maercker U (1989) Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone. Trees 3: 57–64

  12. Maier-Maercker U, Koch W (1986) Delignification of subsidiary and guard cell walls by SO2 and probable implication on the humidity response of Picea abies (L.) Karst. Eur J For Pathol 16: 342–351

  13. Maier-Maercker U, Koch W (1991) Experiments on the control capacity of stomata of Picea abies (L.) Karst. after fumigation with ozone and in environmentally damaged material. Plant Cell Environ (in press)

  14. Naumann R, Ludewig M, Fenner R, Lalk I, Bigdon M, Dörffling K (1988) Untersuchung physiologischer Kenngrößen zur Beurteilung des Schadenszustandes von Fichten. In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”. Forstamt Farchau/Ratzeburg GKSS-Forschungszentrum Geestahacht 1988/E55

  15. Oertli JJ, Jenka B (1985) The theoretical basis for determining osmotic adjustment. J Plant Physiol 121: 391–395

  16. Passioura JB (1988) Response to Dr. P. J. Kramers article “Changing concepts regarding plant water relations” 11: 565–568. Plant Cell Environ 11: 569–571

  17. Rosenkranz T, Bareis C, Braun J, Wild A (1989) Investigation on the water status of spruce trees in relation to the occurrence of novel forest decline. Plant Physiol Biochem 27: 333–340

  18. Schaub H, Zwoch I, Jurat R (1986) Untersuchungen über den Einfluß schwefelhaltiger Verbindungen und Ozon (einzeln wie auch in Kombination) auf Wachstum und Entwicklung von Pflanzen. In: Wirkungen von Luftverunreinigungen auf Waldbäume und Waldböden, Beiträge zum IMA-Querschnittsseminar, spezielle Berichte der Kernforschungsanlage Jülich 369: 238–243

  19. Schönborn v A, Werner H (1989) Untersuchungen zur Ozonbelastung der Luft an zwei Höhenprofilen im Bayerischen Alpenraum und in einem Fichtenbestand (Bestandeshöhenprofil) im Nationalpark Bayerischer Wald. In: 1. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden” GSF-Bericht 6:407–416

  20. Schulze ED, Cermak J, Matyssek R, Penka M, Zimmermann R, Vanicek F (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia (Berl) 66:475–483

  21. Schulze ED, Steudle E, Gollan T, Schurr U (1988) Response to Dr P J Kramer's article “Changing concepts regarding plant water relations” 11: 565–568. Plant Cell Environ 11: 573–576

  22. Tazawa M, Kamiya N (1966) Water permeability of a characeen internodial cell with special reference to its polarity. Aust J Biol Sci 19: 399–419

  23. Waring RH, Running SW (1976) Water uptake. Storage and transpiration by conifers: a physiological model. Lange OL, Kappen L, Schulze ED (eds) In: Water and plant life, problems and modern approaches. Springer, Berlin Heidelberg New York, pp 189–202

  24. Weatherley PE (1976) Water movement through plants. In: Monteith JL, Weatherley PE (eds) A discussion on water relations of plants. Philos Trans R Soc London Ser B 273: 435–444

  25. Zimmermann R, Oren R, Schulze ED, Werk KS (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline II. Photosynthesis and leaf conductance. Oecologia (Berl) 76: 513–518

Download references

Author information

Correspondence to Uta Maier-Maercker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maier-Maercker, U., Koch, W. Experiments on the water budget of densely and sparsely needled spruces [Picea abies (L.) Karst.] in a declining stand. Trees 5, 164–170 (1991). https://doi.org/10.1007/BF00204339

Download citation

Key words

  • Forest decline
  • Osmotic potential
  • Picea abies
  • Water content
  • Water potential