Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A note on the reafference principle

  • 124 Accesses

  • 5 Citations


Two alternative circuits to realize the reafference principle are considered and quantitatively analyzed. Both are combinations of a conventional control loop with negative feedback and linear transfer functions, as well as of an efference copy branch. The feedback control loop compensates for passive movements of the body or of its parts, and generates active movements, whenever the set point differs from zero. The efference copy branch should eliminate sensory messages to higher brain centres during active body movements and, thus, mediate perceptual stability. In one of the combinations, discussed also briefly by Mittelstaedt (1971), the efference copy branch interacts with and thus modifies the properties of the feedback loop. The performance of this circuit is very sensitive to variations of the system parameters and, therefore, requires precise adjustment. When the transfer function of the efference copy branch exactly matches that of the feedback loop and its gain amounts to 1, this circuit performs as a control loop with an integrator in the negative feedback branch: there is no steady state control error. However, for certain parameter combination the circuit becomes unstable. In the alternative circuit proposed here, the efference copy branch does not interfere with the feedback loop. It is robust against parameter variations. The transient properties of both circuits are described under simplified assumptions regarding the linear transfer functions in the different branches.

This is a preview of subscription content, log in to check access.


  1. Bell CC (1988) Electroreception in mormyrid fish. Central Physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–452

  2. DiStefano JJ, Stubbenrud AR, Williams IJ (1967) Feedback and control systems. Schaum's outline series. McGraw-Hill, New York

  3. Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A161:777–783

  4. Fender DH, Nye PW (1961) An investigation of the mechanism of eye movement control. Kybernetik 1:81–88

  5. Grüsser OJ (1986a) Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychol 63:3–21

  6. Grüsser OJ (1986b) Some recent studies on the quantitative analysis of efference copy mechanisms in visual perception. Acta Psychol 63:49–62

  7. Guthrie BL, Porter JD, Sparks DR (1983) Corollary discharge provides accurate eye position information to the oculomotor system. Science 221:1193–1195

  8. Heisenberg M, Wolf R (1988) Reafferent control of optomotor yaw torque in Drosophila melanogaster. J Comp Phsiol 163:373–388

  9. Holst E v. Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476

  10. Horridge GA (1966) Study of a system, as illustrated by the optokinetic response. In: neurons and hormonal mechanisms of integration. Symp Soc Exp Biol 20:179–198

  11. MacKay D (1973) Visual stability and voluntary eye movements. In: Jung R (eds) Handbook of sensory physiology, vol VII/3A. Springer, Berlin Heidelberg New York, pp 307–321

  12. Mittelstaedt H (1949) Telotaxis und Optomotorik von Eristalis bei Augeninversion. Naturwissenschaften 36:90–91

  13. Mittelstaedt H (1951) Zur Analyse physiologischer Regelungssysteme. Verh Dtsch Zool Gest Wilhelmshaven 150–157

  14. Mittelstaedt H (1971) Reafferenzprinzip Apologie und Kritik. In: Keidel WD, Plattig KH (eds) Vorträge der Erlanger Physiologentagung. Springer, Berlin Heidelberg New York, pp 161–171

  15. Oppelt W (1960) Kleines Handbuch technischer Regelvorgänge, 3. Auflage. Verlag Chemie, Weinheim, pp 456–457

  16. Paul DH (1989) Nonspiking stretch receptors of the crayfish swimmeret receive an efference copy of the central motor pattern of the swimmeret. J Exp Biol 141:257–264

  17. Paul H, Nalbach HO, Varjü D (1990) Eye movements in the walking crab Pachygrapsus marmoratus. J Exp Biol (in press)

  18. Precht W (1987) Neuronal operations in the vestibular system. Studies of brain functions, vol 2. Springer, Berlin Heidelberg New York

  19. Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60:122–138

  20. Robinson DA (1989) Integrating with neurons. Ann Rev Neurosci 12:33–45

  21. Shen L (1989) Neural Integration by short term potentiation. Biol Cybern 61:319–325

  22. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

  23. Thorson J (1964) Dynamics of motion perception in the desert locust. Science 145:69–71

  24. Tonner F (1938) Halsreflexe und Bewegungssehen bei Arthropoden. Z Vergl Physiol 25:427–454

  25. Varjú D (1973) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Wirksamkeit und biologische Signifikanz des optomotorischen Regelkreises. Nova Acta Leopoldina (Neue Folge) 37/2:173–193

  26. Varjú D (1975) Stationary and dynamic responses during visual edge fixation by walking insects. Nature 255:330–332

  27. Varjú D (1976) Visual edge fixation and negative phototaxis in the mealworm beetle Tenebrio molitor. Biol Cybern 25:17–26

  28. Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New York, pp 131–157

  29. Wagner H (1986) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). III. Interaction between angular movement induced by wide and small field stimuli. Phil Trans R Soc London B312:581–595

  30. Wallach H (1985) Perceiving a stable environment. Sci Am 252

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varjú, D. A note on the reafference principle. Biol. Cybern. 63, 315–323 (1990).

Download citation


  • Feedback Loop
  • Feedback Control
  • Control Loop
  • Conventional Control
  • Linear Transfer Function