Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High temperature calorimetry of sulfide systems

III. Standard enthalpies of formation of phases in the systems Fe-Cu-S and Co-S

  • 199 Accesses

  • 17 Citations


The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported:

$$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$
$$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$


$$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$

The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\). Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.

This is a preview of subscription content, log in to check access.


  1. Barin J, Knacke O Kubaschewski O (1977) Thermochemical properties of inorganic substances, supplement. Springer-Verlag, Berlin Heidelberg New York

  2. Barton PB (1973) Solid solutions in system Cu-Fe-S. Part 1. The Cu-S and CuFe-S join. Econ Geol 68:455–465

  3. Barton PB, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, second edition. Wiley and Sons, New York Chichester Brisbane Toronto, pp 278–403

  4. Cemic L, Kleppa OJ(1986) High temperature calorimetry of sulfide systems. I. Thermochemistry of liquid and solid phases of Ni+S. Geochim Cosmochim Acta 50:1633–1641

  5. Cemic L, Kleppa OJ (1987) High temperature calorimetry of sulfide systems. II. Standard enthalpies of formation of pentlandite and violarite. Phys Chem Minerals 14:52–57

  6. Chase MW, Curnutt JL, Downey JR, McDonald RA, Syverud AN, Venezuela EA (1982) JANAF Thermochemical Tables, 1982 Supplement J Phys Chem Ref Data 11:835–839

  7. Conrad BR, Stridhar R, Warner JS (1980) High-temperature thermodynamic properties of chalcopyrite. J Chem Thermodynamics 12:817–833

  8. Dickens KJ, Kleppa OJ, Yokokawa H (1980) Microcomputer controlled integrator for Calvet-type twin calorimeters. Rev Sci Instr 51:675–677

  9. JANAF (1976) Thermochemical data. The Dow Company, Thermal Research, Midland Michigan

  10. Johnson GK, Steele WV (1981) The standard enthalpy of formation of chalcopyrite (CuFeS2) by fluorine bomb calorimetry. J Chem Thermodynamics 13:991–997

  11. Kleppa OJ (1960) A new twin high temperature reaction calorimeter. The heats of mixing in liquid sodium-potassium nitrates. J Phys Chem 64:1937–1940

  12. Kleppa OJ (1972) Oxide melt solution calorimetry. Coll Inst du CNRS No 201, Thermochimie, Paris CNRS: 119–127

  13. Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, fifth edition. Pergamon Press, Oxford

  14. Mills KC (1974) Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides, Butterworth, London:30

  15. Papatheodorou GN (1969) Unpublished Ph.D. thesis, Department of Chemistry, University of Chicago

  16. Rau H (1976) Range of homogeneity and defect energetics in Co1-xS. J Phys Chem Solids 37:931–934

  17. Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures. Geol Sur Bull 1452, Washington

  18. Robie RA, Wiggins LB, Barton PB, Hemingway BS (1985) Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): Estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). J Chem Thermodyn 17:481–488

  19. Rosenqvist T (1954) A thermodynamic study of the iron, cobalt, and nickel sulfides: J Iron Steel Inst 176:37–57

  20. Topor L, Kleppa OJ (1985) Enthalpies of formation of first row transition metal borides by a new calorimetric method. J Chem Thermodyn 17:1003–1016

  21. Wartenberg Hv (1909) Die Bildungswärmen von Kupro- und Kuprisulfid. Z Phys Chem 67:446–453

  22. Watanabe S, Kleppa OJ (1983) A thermochemical study of liquid and solid alloys {(1-x)La+xNi} at 1376 K. J Chem Thermodyn 15:633–644

  23. Yund RA, Hall HT (1969) Hexagonal and monoclinic pyrrhotites. Econ Geol 64:420–423

  24. Yund R, Kullerud G (1986) Thermal stability of assemblages in the Cu-Fe-S system. J Petrol 7:454–488

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cemič, L., Kleppa, O.J. High temperature calorimetry of sulfide systems. Phys Chem Minerals 16, 172–179 (1988). https://doi.org/10.1007/BF00203201

Download citation


  • Sulfide
  • Enthalpy
  • Cobalt
  • Calorimetry
  • Pyrite