Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sulphide synthesis and ore genesis

  • 143 Accesses

  • 5 Citations


This review of experimental work on the formation of sulphide ores shows how the development of geological thought on the genesis of these deposits influenced the direction of these investigations. The experimental work to date emphasises the necessity for the chemist and the physical chemist to work together with the geologist so that the complex processes that contribute to the formation of a metal sulphide deposit may be defined and their individual roles evaluated.


Diese Zusammenfassung von Arbeiten über die Bildung sulfidischer Erze zeigt, wie die Entwicklung geologischen Denkens die Forschungen über die Genese der Vorkommen beeinflußte. Moderne Experimentalarbeiten lassen die Notwendigkeit erkennen, daß Chemiker und Physiko-Chemiker mit den Geologen zusammenarbeiten müssen, damit die komplizierten Prozesse, die zur Bildung sulfidischer Ablagerungen führten, geklärt und ihre Einzelheiten verstanden werden können.

This is a preview of subscription content, log in to check access.


  1. Agricola Georgius: De re metallica. Transl. H. C. Hoover, and L. H. Hoover. New York: Dover Publications, 638 p., 1950

  2. Anderson, G. M.: The solubility of PbS in H2S-water solutions. Econ. Geol. 57, 809–828 (1962).

  3. Baas-Becking, L. G. M.: Biogenic sulphides. Econ. Geol. 56, 259–272 (1961).

  4. Barnes, H. L.: Environmental limitations to mechanisms of ore transport. In: Symposium — Problems of Postmagmatic Ore Deposition, (Ed. M. Stemprok) 316–326. Prague: Geol. Surv. Czech., Vol. 2, 595 p., 1965.

  5. Barton, P. B.: The chemical environment of ore deposition and the problem of low-temperature ore transport, 279–300. In Researches in Geochemistry. (Ed. P. H. Abelson) New York: Wiley, 511 p., 1959.

  6. Bateman, A. M.: Economic Mineral Deposits. 2nd Ed., New York: Wiley, 916 p., 1951.

  7. Béland, R.: Synthesis of some sulpharsonites of silver in alkali sulphide solutions. Toronto Univ. Studies Geol. Ser. 50, 79–81 (1948).

  8. Berner, R. A.: Iron sulphides formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol. 72, 293–306 (1964).

  9. Clark, J. B., and P. C. Menaul: The role of colloidal migration in ore deposits. Econ. Geol. 11, 37–41 (1916).

  10. Cuthbert, M. E.: Formation of bornite at atmospheric temperature and pressure. Econ. Geol. 57, 38–41 (1962).

  11. Davidson, C. F.: A possible mode of origin of strata-bound copper ores. Econ. Geol. 60, 942–954 (1965).

  12. — Further remarks on biogenic sulphides. Econ. Geol. 57, 1134–1137 (1962).

  13. De Vore, G. W.: The role of adsorption in the fractionation and distribution of elements. J. Geol. 63, 159–190 (1955).

  14. Garrels, R. M., and C. R. Naeser: Equilibrium distribution of dissolved sulphur species for water at 25° C and one atmosphere total pressure. Geochim. Cosmochim. Acta 15, 113–130 (1959).

  15. Grout, E. F.: On the behaviour of cold acid sulphate solutions of copper, silver, and gold with alkaline extracts of metallic sulphides. Econ. Geol. 8, 407–433 (1913).

  16. Hamilton, E. L.: Thickness and consolidation of deep-sea sediments. Bull. Geol. Soc. Am. 70, 1399–1424 (1959).

  17. Hansen, M., and K. Anderko: Constitution of Binary Alloys. New York: McGraw-Hill, 1305 p., 1958.

  18. Hedberg, H. D.: Gravitational compaction of clays and shales. Am. J. Sci. 5th Ser. 31, No. 184, 241–287 (1936).

  19. Hutta, J. J., and H. D. Wright: The incorporation of uranium and silver by hydrothermally synthesised galena. Econ. Geol. 59, 1003–1024 (1964).

  20. Jones, R. H. B.: Temperature relations to ore deposition. Econ. Geol. 29, 711–724 (1934).

  21. Kalliokoski, J.: Metamorphic textures and structures in Triassic sulphide ores. Econ. Geol. 58, 1371 (Abstr.) (1963).

  22. Krauskopf, K. B.: Sedimentary Deposits of Rare Metals. Econ. Geol. 50th Anniv. Vol., Part I, 411–463 (1955).

  23. — The use of equilibrium calculations in finding the composition of a magmatic gas phase; in Researches in Geochemistry. Ed. Philip H. Abelson. New York: Wiley, 260–278, 1959.

  24. Kullerud, G.: Review of recent research on geologically significant sulphide systems. Fortschr. Miner. 41, Hefte 2, 221–270 (1964).

  25. Merwin, H. E., and R. H. Lombard: The system Cu-Fe-S. Econ. Geol. 32, 203–284 (1937).

  26. Nishihara, S.: Importance of carbonates in secondary sulphide enrichment. Econ. Geol. 9, 483–485 (1914).

  27. Ol'Shanskii, Ya. I.: Solution transfer ans deposition of chalcocite in a laboratory experiment. Izv. Akad. Nauk SSSR, Ser. Geol. 5, 101–104 (1959).

  28. Park, C. F.: Hydrothermal experiments with copper compounds. Econ. Geol. 26, 857–883 (1931).

  29. Petrascheck, W. E.: Typical factors of metallogenic provinces. Econ. Geol. 60, 1620–1634 (1965).

  30. Ramdohr, P.: Die Lagerstätte von Broken Hill in New South Wales im Lichte der neuen geologischen Erkenntnisse und erzmikroskopischer Untersuchungen. Heidelberger Beitr. Mineral. Petrog. 2, 291–333 (1950).

  31. Ray, J. E.: Synthetic sulphide replacement of ore minerals. Econ. Geol. 25, 433–451 (1930).

  32. Roberts, W. M. B.: Formation of chalcopyrite by reaction between chalcocite and pyrrhotite in cold solution. Nature 4788, 560–562 (1961).

  33. — Recrystallisation and mobilisation of sulphides at 2000 atmospheres and the temperature range 50°–145° C. Econ. Geol. 60, 168–171 (1965).

  34. — The low temperature synthesis in aqueous solution of chalcopyrite and bornite. Econ. Geol. 58, 52–61 (1963).

  35. Sadler, W. R., and P. A. Trudinger: The inhibition of microorganisms by heavy metals. Mineral. Deposita 2, 158–168 (1967).

  36. Smith, F. G.: Solution and precipitation of lead and zinc sulphides in sodium sulphide solutions. Econ. Geol. 35, 646–658 (1940).

  37. Stanton, R. L.: Geological theory and the search for ore. Mining Chem. Eng. Rev. 53, 7, 48–55 (1961).

  38. Temple, K. L., and N. W. Le Roux: Syngenesis of sulphide ores; sulphate-reducing bacteria and copper toxicity. Econ. Geol. 59, 271–278 (1964).

  39. Tischendorf, G.: Zur Genesis einiger Selenidvorkommen insbesondere in Tilkerode im Harz. Freiberger Forschungsh. C 69, 1–168 (1959).

  40. Truebe, H. A.: The analysis of regional geological data for the Front Range Mineral Belt, Colorado. Quart. Colo. School Mines 59, 287–314 (1964).

  41. Uglow, W. L.: Ore genesis and contact metamorphism at the Long Lake Zinc Mine, Ontario. Econ. Geol. 11, 231–245 (1916).

  42. Wahrenberg, J. P., and A. Silverman: Studies of base metal diffusion in experimental and natural systems. Econ. Geol. 60, 317–350 (1965).

  43. Walker, A. L.: Some factors affecting gas phase ore transport. Econ. Geol. 60, 117–123 (1965).

  44. Welsh, T. W. B., and G. A. Stewart: Note on the effect of calcite gangue on the secondary enrichment of copper veins. Econ. Geol. 7, 785–787 (1912).

  45. White, D. E.: Metal contents of some geothermal brines, 432–443. In Symposium — Problems of Postmagmatic Ore Deposition, Geol. Surv. Czech., Prague 1965.

  46. Whitman, A. R.: Diffusion in ore genesis. Econ. Geol. 23, 473–488 (1928).

  47. — The vadose synthesis of pyrite. Econ. Geol. 8, 455–468 (1913).

  48. Zies, E. S., E. T. Allen, and H. E. Merwin: Some reactions involved in secondary sulphide enrichment. Econ. Geol. 11, 407–503 (1916).

  49. — The Valley of Ten Thousand Smokes. Contr. Natl. Geogr. Soc., tech. Pap. I, 4, 1–79 (1929).

Download references

Author information

Additional information

Published by permission of the Director, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roberts, W.M.B. Sulphide synthesis and ore genesis. Mineral. Deposita 2, 188–199 (1967).

Download citation


  • Physical Chemist
  • Experimental Work
  • Mineral Resource
  • Sulphide Deposit
  • Individual Role