Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catecholamine effects on pulmonary blood vessels in strangulation

Summary

Guinea pigs were killed by strangulation to investigate the vasomotor of pulmonary congestion by asphyxia. The noradrenaline uptake by the endothelial cells of the pulmonary arteries and capillaries was observed by fluorescence histochemistry, peroxidase-anti-peroxidase (PAP) immunocytochemistry, and autoradiography. By radioassay, the volumes of noradrenaline uptake by the pulmonary arteries and capillaries in the strangulation group were at a significantly higher level than in the control groups. Many myoendothelial junctions were observed at the sites of constricted arteries, and the invasive noradrenaline was clearly observed in the myoendothelial junction.

The mechanism of the pulmonary vasoconstriction in strangulation is due to the fact that the plasma noradrenaline, increased by asphyxia, invades the endothelial cells of pulmonary arteries and capillaries and causes the vasoconstriction.

Zusammenfassung

Erdrosselte Meerschweinchen wurden auf die Vasomotorik der Lungenstauung bei Erstickungstod untersucht. Die Noradrenalinaufnahme in die Endothelzellen der Pulmonalarterien und Kapillaren wurde durch Fluoreszenz-Histochemie, Peroxidase-Antiperoxidase (PAP), Immuno-Cytochemie und Autoradiographie gemessen. Im Radio-Assay zeigte die erdrosselte Gruppe einen signifikanten Anstieg der Noradrenalin-Aufnahmemenge in die Lungenarterien im Vergleich zur Kontrollgruppe. Viele myoendotheliale Verbindungspunkte wurden an den Stellen der kontrahierten Arterien beobachtet, und das eingedrungene Noradrenalin wurde in den myoendothelialen Verbindungspunkten nachgewiesen.

Der Mechanismus der Lungen-Vasokonstriktion bei Erdrosselung ist dadurch bedingt, daß bei Erstickung das Plasma-Noradrenalin ansteigt, in die endothelialen Zellen der Lungenarterien und -Kapillaren eindringt und schließlich die Vasokonstriktion verursacht. Auf eine weitergehende Diskussion bezüglich der Übertragbarkeit der Untersuchungsergebnisse auf die Verhältnisse beim Menschen wird zunächst verzichtet.

This is a preview of subscription content, log in to check access.

References

  1. Al-Ubaidi F, Bakhle YS (1980) Metabolism of vasoactive hormones in human isolated lung. Clin Sci 58:45–51

  2. Boileau JC, Campeau L, Biron P (1971) Comparative pulmonary fate of intravenous epinephrine. Rev Can Biol 30:281–286

  3. Boileau JC, Crexells C, Biron P (1972) Free pulmonary passage of dopamine. Rev Can Biol 31:69–72

  4. Buonassisi V, Colburn P (1980) Hormone and surface receptors in vascular endothelium. Adv Microcirc 9:76–94

  5. Corrodi H, Hillarp NA, Jonsson G (1964) Fluorescence methods for the histochemical demonstration of monoamines. 3. Sodium borohydride reduction of the fluorescent compounds as a specificity test. J Histochem Cytochem 12:582–586

  6. Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

  7. Furness JB, Costa M, Wilson AJ (1977) Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol- and indolethylamines. Histochemistry 52:159–170

  8. Gillis CN, Cronau LH, Mandel S, Hammond GL (1979) Indicator dilution measurement of 5-hydroxytryptamine clearance by human lung. J Appl Physiol 46:1178–1183

  9. Ginn R, Vane JR (1968) Disappearance of catecholamines from the circulation. Nature 219:740–742

  10. Hammersen F (1980) Endothelial contractility — Does it exist? Adv Microcirc 9:95–134

  11. Hughes J, Gillis CN (1968) Uptake of 3H-norepinephrine by perfused rat lung. Fed Proc: 467

  12. Hughes J, Gillis CN, Bloom FE (1969) The uptake and disposition of dl-norepinephrine in perfused rat lung. J Pharmacol Exp Ther 169:237–248

  13. Iwasawa Y, Gillis CN, Aghajanian G (1973) Hypothermic inhibition of 5-Hydroxytryptamine and norepinephrine uptake by lung: Cellular location of amines after uptake. J Pharmacol Exp Ther 186:498–507

  14. Joftes DL, Warren S (1955) Simplified liquid emulsion radioautography. J Biol Photogr Assoc 23:145–150

  15. Kita T, Shigezane J, Furuya Y (1986a) Mechanism of the pulmonary congestion in ligature strangulation (1). Jpn J Legal Med 40:129–131

  16. Kita T, Shigezane J, Furuya Y (1986b) Mechanism of the pulmonary congestion in ligature strangulation (2). Jpn J Legal Med 40:282–286

  17. Kjellström T, Ahlman H, Dahlström A, Hansson GK, Risberg B (1984) The uptake of 5-hydroxytryptamine in endothelial cells cultured from the pulmonary artery in rats. Acta Physiol Scand 120:243–250

  18. Onteniente B, Geffard M, Calas A (1984) Ultrastructural immunocytochemical study of the dopaminergic innervation of the rat lateral septum with anti-dopamine antibodies. Neuroscience 13:385–393

  19. Prokop O, Göhler W (1976) Forensische Medizin. 3. Aufl. Fischer, Stuttgart New York

  20. Strum JM, Junod AF (1972) Radioautographic demonstration of 5-hydroxytryptamine 3H uptake by pulmonary endothelial cells. J Cell Biol 54:456–467

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kita, T. Catecholamine effects on pulmonary blood vessels in strangulation. Z Rechtsmed 99, 75–85 (1987). https://doi.org/10.1007/BF00200627

Download citation

Key words

  • Asphyxia, vasoconstriction of pulmonary arteries
  • Strangulation, noradrenaline

Schlüsselwörter

  • Erstickung, Vasokonstriktion der Lungenarterien
  • Strangulation, Noradrenalinanstieg