Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The thermoosmotic effect in wood

Summary

Water vapor pressures computed from stationary state data for moist wood (Choong 1963) are used to infer changes in the logarithm of vapor pressure per unit change in Kelvin temperature, d ln p/dT, for comparison with corresponding values from a thermodynamic model. The model evaluates the overall heat of transfer associated with passage of vapor through wood, and hence quantifies the thermoosmotic effect. Results of the comparison verify the existence of a constant vapor entropy for wood in the stationary state.

This is a preview of subscription content, log in to check access.

References

  1. Avramidis, S.; Siau, J. F. 1987: Experiments in nonisothermal diffusion of moisture in wood. Part 3. Wood Sci. Technol. 21: 329–334

  2. Choong, E. T. 1963: Movement of moisture through a softwood in the hygroscopic range. Forest Prod. J. 13: 489–498

  3. de Groot, S. R. 1966: Thermodynamics of irreversible processes. 1st Ed. Amsterdam: North-Holland Publishing Company

  4. Denbigh, K. G.; Raumann, G. 1951: The thermo-osmosis of gases through a membrane. I. Theoretical. Proceedings of the Royal Society, London. Ser. A210: 377–387

  5. Katchalsky, A.; Curran, P. F. 1965: Nonequilibrium thermodynamics in biophysics. Cambridge, MA: Harvard University Press

  6. Nelson, R. M., Jr. 1986: Diffusion of bound water in wood. Part 3. A model for nonisothermal diffusion. Wood Sci. Technol. 20: 309–328

  7. Nelson, R. M., Jr. 1989: Nonisothermal diffusion of moisture in wood. In: Schuerch, C. (Ed.): Cellulose and Wood. Proceedings of the tenth cellulose conference, Syracuse, NY. pp. 357–377. New York: J. Wiley

  8. Siau, J. F.; Jin, Z. 1985: Nonisothermal moisture diffusion experiments analyzed by four alternative equations. Wood Sci. Technol. 19: 151–157

  9. Siau, J. F.; Bao, F.; Avramidis, S. 1986: Experiments in nonisothermal diffusion of moisture in wood. Wood Fiber Sci. 18(1): 84–89

  10. Skaar, C. 1988: Wood-water relations. Berlin Heidelberg: Springer-Verlag

  11. Stanish, M. A. 1986: The roles of bound water chemical potential and gas phase diffusion in moisture transport through wood. Wood Sci. Technol. 19: 53–70

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nelson, R.M. The thermoosmotic effect in wood. Wood Sci.Technol. 26, 289–294 (1992). https://doi.org/10.1007/BF00200164

Download citation

Keywords

  • Entropy
  • Water Vapor
  • Vapor Pressure
  • Stationary State
  • State Data