Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Two-and three-dimensional HCN experiments for correlating base and sugar resonances in 15N, 13C-labeled RNA oligonucleotides

Summary

New 2D and 3D 1H-13C-15N triple resonance experiments are presented which allow unambiguous assignments of intranucleotide H1'-H8(H6) connectivities in 13C-and 15N-labeled RNA oligonucleotides. Two slightly different experiments employing double INEPT forward and back coherence transfers are optimized to obtain the H1'-C1'-N9/N1 and H8/H6-C8/C6-N9/N1 connectivities, respectively. The correlation of H1' protons to glycosidic nitrogens N9/N1 is obtained in a nonselective fashion. To correlate H8/H6 with their respective glycosidic nitrogens, selective 13C-refocusing and 15N-inversion pulses are applied to optimize the magnetization transfers along the desired pathway. The approach employs the heteronuclear one-bond spin-spin interactions and allows the 2D 1H-15N and 3D1H-13C-15N chemical shift correlation of nuclei along and adjacent to the glycosidic bond. Since the intranucleotide correlations obtained are based exclusively on through-bond scalar interactions, these experiments resolve the ambiguity of intra-and internucleotide H1'-H8(H6) assignments obtained from the 2D NOESY spectra. These experiments are applied to a 30-base RNA oligonucleotide which contains the binding site for Rev protein from HIV.

This is a preview of subscription content, log in to check access.

References

  1. Batey R.T., Inada M., Kujawinski E., Puglisi J.D. and Williamson J.R. (1992) Nucleic Acids Res., 20, 4515–4523.

  2. Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 131–138.

  3. Bax A. and Pochapsky S. (1992) J. Magn. Reson., 99, 638–643.

  4. Brühwiler D. and Wagner G. (1986) J. Magn. Reson., 69, 546–551.

  5. Clore G.M. and Gronenborn A.M. (1991) Prog. Nucl. Magn. Reson. Spectrosc., 23, 43–92.

  6. Feigon J., Sklenář V., Wang E., Gilbert D.E., Macaya R.F. and Schultze P. (1992) Methods Enzymol., 176, 235–253.

  7. Geen H. and Freeman R. (1991) J. Magn. Reson., 93, 93–141.

  8. Heus H.A. and Pardi A. (1991) J. Mol. Biol., 217, 113–124.

  9. Kay L.E., Ikura M., Tschudin R. and Bax A. (1980) J. Magn. Reson., 89, 496–514.

  10. Marion D., Ikura M., Tschudin R. and Bax A. (1989) J. Magn. Reson., 85, 393–399.

  11. Michnicka M.J., Harper J.W. and King G.C. (1993) Biochemistry, 32, 395–400.

  12. Milligan J.F., Groebe D.R., Witherell G.W. and Uhlenbeck O.C. (1987) Nucleic Acids Res., 15, 8783–8798.

  13. Morris G.A. and Freeman R. (1979) J. Am. Chem. Soc., 101, 760–762.

  14. Nikonowicz E.P. and Pardi A. (1992a) J. Am. Chem. Soc., 114, 1082–1083.

  15. Nikonowicz E.P. and Pardi A. (1992b) Nature, 355, 184–186.

  16. Nikonowicz E.P. and Pardi A. (1993) J. Mol. Biol., 232, 1141–1156.

  17. Nikonowicz E.P., Sirr A., Legault P., Jucker F.M., Baer L.M. and Pardi A. (1992) Nucleic Acids Res., 20, 4507–4513.

  18. Santoro J. and King G. (1992) J. Magn. Reson., 97, 202–207.

  19. Shaka A.J., Barker P. and Freeman R. (1985) J. Magn. Reson., 64, 547–552.

  20. Sklená<r, V., Peterson, R.D., Rejante, M.R. and Feigon, J. (1993a) submitted.

  21. Sklenář V., Piotto M., Leppik R. and Saudek V. (1993b) J. Magn. Reson. Ser. A, 102 241–245.

  22. van de Ven F.J.M. and Philippens M.E.P. (1992) J. Magn. Reson., 97, 637–644.

  23. Varani G. and TinocoJr. I. (1991) J. Am. Chem. Soc., 113, 9349–9354.

  24. Vuister G.W. and Bax A. (1992) J. Magn. Reson., 98, 428–435.

  25. Wüthrich K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

  26. Wyatt J.R., Chastain M. and Puglisi J.D. (1991) Bio Techniques, 11, 764–769.

Download references

Author information

Correspondence to Vladimír Sklenář or Juli Feigon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sklenář, V., Peterson, R.D., Rejante, M.R. et al. Two-and three-dimensional HCN experiments for correlating base and sugar resonances in 15N, 13C-labeled RNA oligonucleotides. J Biomol NMR 3, 721–727 (1993). https://doi.org/10.1007/BF00198375

Download citation

Keywords

  • Rev response element
  • HIV
  • NMR
  • Three-dimensional NMR
  • Labeled RNA