Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phenomenology of Kármán vortex streets in oscillatory flow

Abstract

Vortex wakes of circular cylinders at low Reynolds numbers have been investigated. Sound waves are superimposed on the flow in mean flow direction. In this configuration the Kármán vortices are shed at the sound frequency or at subharmonics of the sound frequency. The Karman vortex street is treated as a nonlinear self-excited flow oscillator with forced oscillations. Using a flow visualization technique a variety of wake structures has been identified as a function of sound frequency and sound amplitude, but independent of the Reynolds number. The superimposed sound influences the distribution of circulation and accordingly the shedding mechanism. Primary vortex and secondary vortex are shed simultaneously from one side of the cylinder. The alternate vortex shedding is arranged spatially and temporally. Structures along the vortex axes are revealed.

This is a preview of subscription content, log in to check access.

References

  1. Archibald, F. S. 1975: Self-excitation of an acoustic resonance by vortex shedding. J. Sound Vib. 38, 81–103

  2. Armstrong, B. J.; Barnes, F. H.; Grant, I. 1987: A comparison of the structure of the wake behind a circular cylinder in a steady flow with that in a perturbed flow. Phys. Fluids 30, 19–26

  3. Barbi, C.; Favier, D. P.; Maresca, C. A.; Telionis, D. P. 1986: Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech. 170, 527–544

  4. Batchelor, G. K.; Shen, C. 1985: Thermophoretic deposition of particles in gas flowing over cold surfaces. J. Colloid Interface Sc. 107, 21–37

  5. Bearman, P. W. 1984: Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222

  6. Bearman, P. W.; Graham, J. M. R. 1980: Vortex shedding from bluff bodies in oscillatory flow: A report on Euromech 119. J. Fluid Mech. 99, 225–245

  7. Bearman, P. W.; Downie, M. J.; Graham, J. M. R.; Obasaju, E. D. 1985: Forces on cylinders in viscous oscillatory flow at low Keulegan-Carpenter numbers. J. Fluid Mech. 154, 337–356

  8. Benaroya, H.; Lepore, J. A. 1983: Statistical flow-oscillator modeling of vortex-shedding. J. Sound Vibr. 86, 159–179

  9. Berger, E. 1964: Unterdrückung der laminaren Wirbelströmung und des Turbulenzeinsatzes der Kármánschen Wirbelstraße im Nachlauf eines schwingenden Zylinders bei kleinen Reynoldszahlen. Jahrb. d. WGLR, 164–172

  10. Berger, E.; Wille, R. 1972: Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313–340

  11. Bishop, R. E. D.; Hassan, A. Y. 1964: The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. London Ser. A 277, 51–75

  12. Blevins, R. D. 1985: The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217–237

  13. Bouard, R.; Coutanceau, M. 1980: The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104. J. Fluid Mech. 101, 583–607

  14. Cimbala, J. M. 1984: Large structure in the far wakes of two-dimensional bluff bodies. Dissertation, California Institute of Technology, Pasadena/CA, USA

  15. Cimbala, J. M.; Nagib, H. M.; Roshko, A. 1988: Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265–298

  16. Corke, T.; Koga, D.; Drubka, R.; Nagib, H. 1977: A new technique for introducing controlled sheets of smoke streaklines in wind tunnels. JEEE Publication 77-CH 1251-8 AES, 74–80

  17. Couder, Y., Basdevant, C. 1986: Experimental and numerical study of vortex-couples in two dimensional flow. J. Fluid Mech. 173, 225–251

  18. Desruelle, D. 1983: Beyond the Kármán vortex street. M. Sc. Thesis, Illinois Insitute of Technology, Chicago/IL, USA

  19. Detemple, E. 1983: Experimente zum Einfluß von Schall auf Kármánsche Wirbelstraßen. Diplomarbeit, Georg-August-Universität, Göttingen, FRG

  20. Detemple, E. 1986: Zur Phänomenologie Kármánscher Wirbelstraßen in durch Schall überlagerter Strömung. Dissertation, Georg-August-Universität, Göttingen, FRG

  21. Gaster, M. 1969: Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 38, 565–576

  22. Gerich, D.; Eckelmann, H. 1982: Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109–121

  23. Graham, J. M. R. 1969: The effect of end-plates on the two-dimensionality of a vortex wake. Aeronaut. Q. 20, 237–247

  24. Graham, J. M. R. 1980: The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenters numbers. J. Fluid Mech. 97, 331–346

  25. Griffin, O. M. 1974: The effects of synchronized cylinder vibrations on vortex formation and strength, velocity fluctuations, and mean flow. In: Flow-induced structural vibrations (ed. Naudascher, E.) IUTAM/IAHR symp. Karlsruhe, FRG, August 1972. Berlin, Heidelberg, New York: Springer

  26. Griffin, O. M.; Ramberg, S. E. 1974: The vortex-street wakes of vibrating cylinders. J. Fluid Mech. 66, 553–576

  27. Griffin, O. M.; Ramberg, S. E. 1976: Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech. 75, 257–271

  28. Hama, F. R. 1957: Three-dimensional vortex pattern behind a circular cylinder. J. Aeronaut. Sci. 24, 156–158

  29. Humphreys, J. S. 1960: On a circular cylinder in a steady wind at transition Reynolds numbers. J. Fluid Mech. 9, 603–612

  30. Hussain, A. K. M. F.; Ramjee, V. 1976: Periodic wake behind a circular cylinder at low Reynolds numbers. Aeronaut. Q. 27, 123–142

  31. Ishiwata, R.; Ohashi, H. 1984: Fluid forces on a cylinder in oscillating flow. Bull. JSME 27, 1881–1886

  32. Koopmann, G. H. 1967: The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28, 501–512

  33. Matsui, T.; Okude, M. 1983: Formulation of the secondary vortex street in the wake of a circular cylinder. In: Structure of complex turbulent shear flow (eds. Dumas, R.; Fulachier, L.) pp. 156–164. IUTAM symp. Marseille, France, September 1982. Berlin, Heidelberg, New York: Springer

  34. Merzkirch, W. 1974: Flow visualization. New York: Academic Press

  35. Müller, E.-A.; Didden, N. 1980: Zur Erzeugung der Zirkulation bei der Bildung eines Ringwirbels an einer Düsenmündung. Strojnicky Casopis 31, 363–373

  36. Nishioka, M.; Sato, H. 1974: Measurement of velocity distributions in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 65, 97–112

  37. Nishioka, M.; Sato, H. 1978: Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers. J. Fluid Mech. 89, 49–60

  38. Okamoto, S.; Hirose, T.; Adachi, T. 1981: The effect of sound on the vortex-shedding from a circular-cylinder. Bull. JSME 24, 45–53

  39. Oshima, Y.; Natsume, A. 1980: Flow field around an oscillating airfoil. In: Flow visualization II (ed. Merzkirch, W.) pp. 295–299. Washington/DC: Hemisphere

  40. Peltzer, R. D.; Rooney, D. M. 1985: Vortex shedding in a linear shear flow from a vibrating marine cable with attached bluff bodies. J. Fluids Eng. 107, 61–66

  41. Prandtl, L.; Tietjens, O. G. 1934: Applied hydro- and aerome- chanics. New York: McGraw-Hill

  42. Sreenivasan, K. R. 1985: Transitional and turbulent wakes and chaotic dynamical systems. In: Nonlinear dynamics of transcritical flow (eds. Jordan, H. L.; Oertel, H.; Robert, K.) (Lecture Notes Eng.) Berlin, Heidelberg, New York: Springer

  43. Stansby, P. K. 1976: The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows. J. Fluid Mech. 74, 641–665

  44. Strouhal, V. 1878: Über eine besondere Art der Tonerregung. Ann. Phys. Chem. 5, 217–251

  45. Taneda, S. 1972: Visualization experiments on unsteady viscous flows around cylinders and plates. In: Recent research on unsteady boundary layers (ed. Eichelbrenner, E. A.) pp. 1165–1215. IUTAM symp. Quebec, Canada, May 1971. Québec: Les Presses de l'Université Laval

  46. Tanida, Y.; Okajima, A. Watanabe, Y. 1973: Stability of a circular cylinder oscillating in uniform flow or in a wake. J. Fluid Mech. 61, 769–784

  47. Van Atta, C. W.; Gharib, M. 1987: Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 174, 113–133

  48. Wei, T.; Smith, C. R. 1986: Secondary vortices in the wake of circular cylinders. J. Fluid Mech. 169, 513–533

  49. Williamson, C. H. K. 1985: Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141–174

  50. Williamson, C. H. K.; Roshko, A. 1987: Vortex formation in the wake of an oscillating cylinder. Personal communication

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Detemple-Laake, E., Eckelmann, H. Phenomenology of Kármán vortex streets in oscillatory flow. Experiments in Fluids 7, 217–227 (1989). https://doi.org/10.1007/BF00198001

Download citation

Keywords

  • Vortex
  • Reynolds Number
  • Circular Cylinder
  • Flow Visualization
  • Visualization Technique