Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Differential accumulation of hydroxyproline-rich glycoproteins in bean root nodule cells infected with a wild-type strain or a C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli

  • 52 Accesses

  • 7 Citations


An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation.

This is a preview of subscription content, log in to check access.


GAR gold antibodies:

gold-conjugated goat antiserum to rabbit immunoglobulins


deglycosylated hydroxyproline-rich glycoprotein


hydroxyproline-rich glycoprotein




phosphate-buffered saline


trifluoromethane sulfonic acid



B :


Cy :



host cell wall

IS :

intercellular space

IT :

infection thread

LS :

laminated structure

N :


P :




PM :

peribacteroid membrane

PS :

peribacteroid space

S :

starch grain

Va :



  1. Averyhart-Fullard, A.R., Datta, K., Marcus, A. (1988) A hydroxyproline-rich glycoprotein in the soybean cell wall. Proc. Natl. Acad., Sci. USA 85, 1082–1085

  2. Bal, A.K., Shantharam, S., Verma, D.P.S. (1980) Changes in the outer cell wall of Rhizobium during development of the root nodule symbiosis in soybean. Can. J. Microbiol. 26, 1096–1103

  3. Bell, A.A. (1981) Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32, 21–81

  4. Bendayan, M., Puvion, E. (1984) Ultrastructural localization of nucleic acids through several cytochemical techniques on osmium-fixed tissues. J. Histochem. Cytochem. 32, 1185–1191

  5. Benhamou, N., Mazau, D., Esquerré-Tugayé, M.T. (1990) Immunocytochemical localization of hydroxyproline-rich glycoproteins in tomato root cells infected by Fusarium oxysporum f. sp. radicis-lycopersici: Study of a compatible interaction. Phytopathology 80, 163–173

  6. Bradley, D.J., Butcher, G.W., Galfre, G., Wood, E.A., Brewin, N.J. (1986) Physical association between the peribacteroid membrane and lipopolysaccharides from the bacteroid outer membrane in Rhizobium-infected pea root nodule cells. J. Cell Sci. 85, 47–61

  7. Bradley, D.J., Wood, E.A., Galfre, G., Butcher, G.W., Brewin, N.J. (1988) Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173, 149–160

  8. Brangeon, J., Hirel, B., Forchioni, A. (1989) Immunogold localization of glutamine synthetase in soybean leaves, roots, and nodules. Protoplasma 151, 88–97

  9. Brewin, N., Robertson, J.G., Wood, E., Wells, B., Larkins, A.P., Galfre, G., Butcher, G.W. (1985) Common antigens in peribacteroid and plasma membranes of legume root nodule cells, as revealed by monoclonal antibodies. EMBO J. 4, 605–611

  10. Collinge, D.B., Sluzarenko, A.J. (1987) Plant gene expression in response to pathogens. Plant Mol. Biol. 9, 389–410

  11. Corbin, D.R., Sauer, N., Lamb, C.J. (1987) Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol. Cell. Biol. 7, 4337–4344

  12. Day, D.A., Udvardi, M.K. (1989) Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis: peribacteroid units from soybean nodules. Aust. J. Plant Physiol. 16, 69–84

  13. Edge, A.S.B., Faltynek, C.R., Hof, L., Reichert, L.E. Jr., Weber, P. (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 118, 131–137

  14. Esquerré-Tugayé, M.T., Lamport, D.T.A. (1979) Cell surfaces in plant-microorganism interactions. I. A structural investigation of cell wall-hydroxyproline-rich glycoproteins which accumulate in fungus-infected plants. Plant Physiol. 64, 314–319

  15. Esquerré-Tugayé, M.T., Lafitte, C., Mazau, D., Toppan, A., Touzé, A. (1979) Cell surfaces in plant-microorganism interactions. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol. 64, 320–326

  16. Faucher, C., Maillet, F., Vasse, J., Rosenberg, C., Van Brussel, A.A.N., Truchet, G., Denarié, J. (1988) Rhizobium meliloti host range Nod H gene determines production of an alfalfa-specific extracellular signal. J. Bacteriol. 165, 517–522

  17. Finan, T.M., Wood, J.M., Jordan, D.C. (1983) Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J. Bacteriol. 154, 1403–1413

  18. Fortin, M.A., Zelechowska, M., Verma, D.P.S. (1985) Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J. 4, 3041–3046

  19. Franssen, H.J., Nap, J.P., Gloudemans, T., Stiekema, H., Van Dam, H., Govers, F., Louwerse, J., Van Kanmen, A., Bisseling, T. (1987) Characterization of cDNA from nodulin-75 of soybean: a gene product involved in early stages or root nodule development. Proc. Natl. Acad. Sci. USA 84, 4495–499

  20. Glenn, A.R., McKay, I.A., Arwas, R., Dilworth, M.J. (1984) Sugar metabolism and the symbiotic properties of carbohydrate mutants in Rhizobium leguminosarum. J. Gen. Microbiol. 130, 239–245

  21. Gloudemans, T., Bisseling, T. (1989) Plant gene expression in early stages of Rhizobium-legume symbiosis. Plant Sci. 65, 1–14

  22. Halverson, J.L., Stacey, G. (1986) Signal exchange in plant-microbe interactions. Microbiol. Rev. 50, 193–225

  23. Lafontaine, P.J., Lafrenière, C., Chalifour, F.P., Dion, P., Antoun, H. (1989) Carbohydrate and organic acid composition of effective and ineffective root nodules of Phaseolus vulgaris L. Physiol. Plant 76, 507–513

  24. Lafontaine, P.J., Benhamou, N., Antoun, H. (1990) Evidence for the occurrence of laminated structures rich in cellulosic β-1,4glucans in plastids of Phaseolus vulgaris root nodule cells infected by an ineffective C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli. Planta 180, 312–323

  25. Lalande, R., Antoun, H., Paré, T., Joyal, P. (1986) Effets de l'inoculation avec les souches du Rhizobium leguminosarum biovar phaseoli sur le rendement et la teneur en azote du haricot (Phaseolus vulgaris L.) Naturaliste Canadien 113, 337–346

  26. Lamport, D.T.A. (1977) Structure, biosynthesis, and significance of cell wall glycoproteins. Rec. Adv. Phytochem. 11, 79–111

  27. Leach, J.E., Cantrell, M.A., Sequeira, L. (1982) Hydroxyprolinerich bacterial agglutinin from potato. Plant Physiol. 70, 1353–1358

  28. Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.C., Denarié, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784

  29. Marinkovitch, V.A. (1964) Purification and characterization of the hemagglutinin present in potatoes. J. Immunol. 93, 732–741

  30. Mazau, D. (1987) Étude cellulaire et moléculaire des glycoprotéines riches en hydroxyproline dans les interactions plantes — microorganismes. Thèse de doctorat d'État, Université Paul Sabatier, Toulouse, France

  31. Mazau, D., Esquerré-Tugayé, M.T. (1986) Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens. Physiol. Mol. Plant Pathol. 86, 540–546

  32. Mazau, D., Rumeau, D., Esquerré-Tugayé, M.T. (1988) Two different families of hydroxyproline-rich glycoproteins in melon callus. Plant Physiol. 86, 540–546

  33. Mellon, J.E., Helgeson, J.P. (1982) Interaction of a hydroxyprolinerich glycoprotein from tobacco callus with potential pathogens. Plant Physiol. 70, 401–405

  34. Moore, P.J., Staehelin, L.A. (1988) Immunogold localization of the cell wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication of secretory pathways. Planta 174, 433–445

  35. Newcomb, W., Creighton, S., Latta, L. (1981) A reinvestigation of the origin of the peribacteroid membrane in root nodules of Vicia faba. Can. J. Bot. 59, 1547–1552

  36. O'Connell, R.J., Brown, I.R., Mansfield, J.W., Bailey, J.A., Mazau, D., Rumeau, D., Esquerré-Tugayé, M.T. (1990) Immunocytochemical localization of hydroxyproline-rich glycoproteins accumulating in melon and bean at sites of resistance to bacteria and fungi. Mol. Plant-Microbe Interact. 3, 33–40

  37. Robertson, J.G., Wells, B., Brewin, N.J., Wood, E., Knight, C.D., Downie, J,A. (1985) The legume-Rhizobium symbiosis: a cell surface interaction. J. Cell Sci. Suppl. 2, 317–331

  38. Roby, D., Toppan, A., Esquerré-Tugayé, M.T. (1985) Cell surfaces in plant-microorganism interactions. V. Elicitors of fungal and plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoproteins in plants. Plant Physiol. 77, 700–704

  39. Ronson, C.W., Lyttleton, P., Robertson, J.G. (1981) C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc. Natl. Acad. Sci. USA 78, 4284–4288

  40. Sadowsky, M.J., Cregan, P.B., Rodriguez-Quinones, F., Keyser, H.H. (1989) Microbial influence of gene-for-gene interactions in legume-Rhizobium symbioses. In: Beltsville Symp. Beltsville, Md 30

  41. Showalter A.M., Rumeau, D. (1990) Molecular biology of plant cell wall hydroxyproline-rich glycoproteins. In: Recognition and assembly of animal and plant extracellular matrix, Adair, S., Mecham, R.P., eds. (In press)

  42. Showalter, A.M., Varner, J.E. (1989) Plant hydroxyproline-rich glycoproteins. In: The Biochemistry of plants; A comprehensive treatise, vol. 15, pp. 485–520 Stumpf, P.K., Conn, E.E., eds. Academic Press, New York

  43. Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A., Bonfante-Fasolo, P. (1989) Chitinase in roots of mycorrhizal Allium porum: regulation and localization. Planta 177, 447–455

  44. Udvardi, M.K., Salom, C.S., Day, D.A. (1988) Transport of lglutamate across the bacteroid membrane but not the peribacteroid membrane from soybean root nodules. Mol. Plant Microbe Interact. 1, 250–254

  45. Udvardi, M.K., Day, D.A. (1989) Electrogenic ATPase activity on the peribacteroid membrane of soybean (Glycine max L.) root nodules. Plant Physiol. 90, 982–987

  46. Van den Bosch, K.A., Newcomb, E.H. (1986) Immunogold localization of nodule-specific uricase in developing soybean root nodules. Planta 167, 425–436

  47. Van den Bosch, K.A., Newcomb, E.H. (1988) The occurrence of leghemoglobin protein in the uninfected intersticial cells of soybean root nodules. Planta 175, 447–451

  48. Van de Wiel, C., Scheres, B., Franssen, K., Van Lierop, M.J., Van Lammeren, A., Van Kammen, A., Bisseling, T. (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J. 9, 1–7

  49. Verma, D.P.S., Long, S. (1983) The molecular biology of Rhizobium-legume symbiosis. Int. Rev. Cytol. Suppl 14, 211–245

  50. Werner, D., Mörschel, E., Kort, R., Mellor, R.B., Bassarab, S. (1984) Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (Fix-) root nodule of soybean (Glycine max). Planta 162, 8–16

Download references

Author information

Additional information

This study was supported by grants from the National Research Council of Canada and from the Ministère de l'Éducation du Québec (FCAR). The authors thank S. Noël for excellent technical assistance and C. Parent for typing this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benhamou, N., Lafontaine, P.J., Mazau, D. et al. Differential accumulation of hydroxyproline-rich glycoproteins in bean root nodule cells infected with a wild-type strain or a C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli . Planta 184, 457–467 (1991).

Download citation

Key words

  • Hydroxyproline-rich glycoprotein
  • Mutant (Rhizobium)
  • Peribacteroid membrane
  • Phaseolus
  • Rhizobium (mutant)
  • Root nodule