Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recognition of nonpeptide antigens by T cells

This is a preview of subscription content, log in to check access.

Abbreviations

BCG :

Bacillus Calmette-Guérin

CDR3 :

Complementarity-determining region 3

LAM :

lipoarabinomannan

LPS :

Lipopolysaccharide

MEP :

Monoethyl phosphate

TCR :

T cell receptor

TTP :

Thymidine triphosphate

References

  1. 1.

    Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic nonpeptide antigens recognized by human γδ T cells. Nature 375:155–158

  2. 2.

    Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372:691–694

  3. 3.

    Bloom BR, Murray CJL (1992) Tuberculosis: commentary on a reemergent killer. Science 257:1055–1064

  4. 4.

    Haregewoin A, Soman G, Horn RC, Finberg RW (1989) Human γδ+ T cells respond to mycobacterial heat-shock protein. Nature 340:309–312

  5. 5.

    Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, Rea TH, Bloom BR, Brenner MB (1989) Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. Nature 339:544–548

  6. 6.

    Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SHE (1990) A large fraction of human peripheral blood γ/δ+ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 171:667–679

  7. 7.

    O'Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57:667–674

  8. 8.

    De Libero G, Casorati G, Giachino C, Carbonara C, Migone N, Matzinger P, Lanzavecchia A (1991) Selection by two powerful antigens may account for the presence of the major population of human peripheral γ/δ T cells. J Exp Med 173:1311–1322

  9. 9.

    Pfeffer K, Schoel B, Guile H, Kaufmann SHE, Wagner H (1990) Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur J Immunol 20:1175–1179

  10. 10.

    Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA 91:8175–8179

  11. 11.

    Constant P, Davodeau F, Peyrat M-A, Poquet Y, Puzo G, Bonneville M, Fournié J-J (1994) Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264:267–270

  12. 12.

    Schoel B, Sprenger S, Kaufmann SHE (1994) Phosphate is essential for stimulation of Vγ9Vδ2 T lymphocytes by mycobacterial low molecular weight ligand. Eur J Immunol 24:1886–1892

  13. 13.

    Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H (1995) Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 154:998–1006

  14. 14.

    Pfeffer K, Schoel B, Plesnila N, Lipford GB, Kromer S, Deusch K, Wagner H (1992) A lectin-binding, protease-resistant mycobacterial ligand specifically activates Vγ9+ human γδ T cells. J Immunol 148:575–583

  15. 15.

    Bürk MR, Mori L, De Libero G (1995) Human Vγ9-Vδ2 cells are stimulated in a cross-reactive fashion by a variety of phosphorylated metabolites. Eur J Immunol 25:2052–2058

  16. 16.

    Lang F, Peyrat MA, Constant P, Davodeau F, David-Ameline J, Poquet Y, Vié H, Fournié JJ, Bonneville M (1995) Early activation of human Vγ9Vδ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J Immunol 154:5986–5994

  17. 17.

    Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:495–507

  18. 18.

    Rock EP, Sibbald PR, Davis MM, Chien Y-h (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328

  19. 19.

    Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Mads L, Draper RK, Chien Y-h (1994) The nature of major histocompatibility complex recognition by γδ T cells. Cell 76:29–37

  20. 20.

    Sciammas R, Johnson RM, Sperling AI, Brady W, Linsley PS, Spear PG, Fitch FW, Bluestone JA (1994) Unique antigen recognition by a herpesvirus-specific TCR-γδ cell. J Immunol 152:5392–5397

  21. 21.

    Johnson RM, Lancki DW, Sperling AI, Dick RF, Spear PG, Fitch FW, Bluestone JA (1992) A murine CD4 , CD8 T cell receptor-γδ T lymphocyte clone specific for herpes simplex virus glycoprotein I. J Immunol 148:983–988

  22. 22.

    Panchamoorthy G, McLean J, Modlin RL, Morita CT, Ishikawa S, Brenner MB, Band H (1991) A predominance of the T cell receptor Vγ2/Vδ2 subset in human mycobacteria-responsive T cells suggests germline gene encoded recognition. J Immunol 147:3360–3369

  23. 23.

    Ohmen JD, Barnes PF, Uyemura K, Lu SZ, Grisso CL, Modlin RL (1991) The T cell receptors of human γδ T cells reactive to Mycobacterium tuberculosis are encoded by specific V genes but diverse V-J junctions. J Immunol 147:3353–3359

  24. 24.

    Davodeau F, Peyrat M-A, Hallet M-M, Gaschet J, Houde I, Vivien R, Vie H, Bonneville M (1993) Close correlation between Daudi and mycobacterial antigen recognition by human γδ T cells and expression of V9JPC1γ/V2DJCδ-encoded T cell receptors. J Immunol 151:1214–1223

  25. 25.

    Penninger JM, Wen T, Timms E, Potter J, Wallace VA, Matsuyama T, Ferrick D, Sydora B, Kronenberg M, Mak TW (1995) Spontaneous resistance to acute T-cell leukaemias in TCR Vγ1.JγCγ4 transgenic mice. Nature 375:241–244

  26. 26.

    Porcelli SA (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59:1–98

  27. 27.

    Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen. Nature 360:593–597

  28. 28.

    Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ, Modlin RL (1995) Cd1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230

  29. 29.

    Leclercq G, Plum J (1995) Stimulation of TCR Vγ3 cells by Gram-negative bacteria. J Immunol 154:5313–5319

  30. 30.

    Ohga S, Yoshikai Y, Takeda Y, Hiromatsu K, Nomoto K (1990) Sequential appearance of γ/δ- and γ/β-bearing T cells in the peritoneal cavity during an i.p. infection with Listeria monocytogenes. Eur J Immunol 20:533–538

  31. 31.

    Hasegawa T, Tanaka T, Yoshikai Y (1992) The appearance and role of γδ T cells in the peritoneal cavity and liver during primary infection with Listeria monocytogenes in rats. Int Immunol 4:1129–1136

  32. 32.

    Emoto M, Danbara H, Yoshikai Y (1992) Induction of γ/δ T cells in murine salmonellosis by an avirulent by not by a virulent strain of Salmonella choleraesuis. J Exp Med 176:363–372

  33. 33.

    Emoto M, Naito T, Nakamura R, Yoshikai Y (1993) Different appearance of γδ T cells during salmonellosis between Ityr and Itys mice. J Immunol 150:3411–3420

  34. 34.

    Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, Bluestone JA, Nomoto K (1992) A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J Exp Med 175:49–56

  35. 35.

    Fu Y-X, Roark CE, Kelly K, Drevets D, Campbell P, O'Brien R, Born W (1994) Immune protection and control of inflammatory tissue necrosis by γδ T cells. J Immunol 153:3101–3115

  36. 36.

    Mixter PF, Camerini V, Stone BJ, Miller VL, Kronenberg M (1994) Mouse T lymphocytes that express a γδ T-cell antigen receptor contribute to resistance to Salmonella infection in vivo. Infect Immun 62:4618–4621

  37. 37.

    Inoue T, Yoshikai Y, Matsuzaki G, Nomoto K (1991) Early appearing γ/δ-bearing T cells during infection with Calmétte Guérin bacillus. J Immunol 146:2754–2762

  38. 38.

    Janis EM, Kaufmann SHE, Schwartz RH, Pardoll DM (1989) Activation of γδ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244:713–716

  39. 39.

    Skeen MJ, Ziegler HK (1993) Induction of murine peritoneal γ/δ T cells and their role in resistance to bacterial infection. J Exp Med 178:971–984

  40. 40.

    Skeen MJ, Ziegler HK (1993) Intercellular interactions and cytokine responsiveness of peritoneal α/β and γ/δ T cells from Listeria-infected mice: synergistic effects of interleukin 1 and 7 on γ/δ T cells. J Exp Med 178:985–996

  41. 41.

    Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/BCG locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp 1 gene. J Exp Med 182:655–666

  42. 42.

    Jones-Carson J, Vazquez-Torres A, van der Heyde HC, Warner T, Wagner RD, Balish E (1995) γ/δ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med 1:552–557

  43. 43.

    Galéa P, Brezinschek R, Lipsky PE, Oppenheimer-Marks N (1994) Phenotypic characterization of CD4/α/β TCR+ and γδ TCR+ T cells with a transendothelial migratory capacity J Immunol 153:529–542

  44. 44.

    Diacovo TG, Roth SJ, Morita CT, Rosat J-P, Brenner MB, Springer TA (1995) Interactions of human αβ and γδ T lymphocyte subsets in shear flow with E-selectin and P-selectin. J Exp Med (in press)

  45. 45.

    Matsuzaki G, Li X-Y, Kadena T, Song F, Hiromatsu K, Yoshida Y, Homoto K (1995) Early appearance of T cell receptor αβ+ CD4 CD8 T cells with a skewed vari region repertoire after infection with Listeria monocytogenes. Eur J Immunol 25:1985–1991

  46. 46.

    Ladel CH, Hess J, Daugelat S, Mombaerts P, Tonegawa S, Kaufmann SHE (1995) Contribution of α/β and γ/δ T lymphocytes to immunity against Mycobacterium bovis Bacillus Calmette Guérin: studies with T cell receptor-deficient mutant mice. Eur J Immunol 25:838–846

  47. 47.

    Ladel CH, Blum C, Dreher A, Reifenberg K, Kaufmann SHE (1995) Protective role of γ/δ T cells and α/β T cells in tuberculosis. Eur J Immunol 25:2877–2881

  48. 48.

    Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SHE (1993) Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365:53–56

  49. 49.

    Tsuji M, Mombaerts P, Lefrancois L, Nussenzweig RS, Zavala F, Tonegawa S (1994) γδ T cells contribute to immunity against the liver stages of malaria in αβ T-cell-deficient mice. Proc Natl Acad Sci USA 91:345–349

  50. 50.

    Hara T, Mizuno Y, Takaki K, Takada H, Akeda H, Aoki T, Nagata M, Ueda K, Matsuzaki G, Yoshikai Y, Nomoto K (1992) Predominant activation and expansion of Vγ9-bearing γδ T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest 90:204–210

  51. 51.

    Sumida T, Maeda T, Takahashi H, Yoshida S, Yonaha F, Sakamoto A, Tomioka H, Koike T, Yoshida S (1992) Predominant expansion of Vγ9/Vδ2 T cells in a tularemia patient. Infect Immunol 60:2554–2558

  52. 52.

    Barnes PF, Grisso CL, Abrams JS, Band H, Rea TH, Modlin RL (1992) γδ T lymphocytes in human tuberculosis. J Infect Dis 165:506–512

  53. 53.

    Balbi B, Valle MT, Oddera S, Giunti D, Manca F, Rossi GA, Allegra L (1993) T-lymphocytes with γδ+ Vδ2+ antigen receptors are present in increased proportions in a fracti patients with tuberculosis or with sarcoidosis. Am Rev Respir Dis 148:1685–1690

  54. 54.

    Bertotto A, Gerli R, Spinozzi F, Muscat C, Scalise F, Castellucci G, Sposito M, Candio F, Vaccaro R (1993) Lymphocytes bearing the γδ T cell receptor in acute Brucella melitensis infection. Eur J Immunol 23:1177–1180

  55. 55.

    Ho M, Webster HK, Tongtawe P, Patanapanyasat K, Weidanz WP (1990) Increased γδ T cells in acute Plasmodium falciparum malaria. Immunol Lett 25:139–142

  56. 56.

    Perera MK, Carter R, Goonewardene R, Mendis KN (1994) Transient increase in circulating γ/δ T cells during Plasmodium vivax malarial paroxysms. J Exp Med 179:311–315

  57. 57.

    Scalise F, Gerli R, Castellucci G, Spinozzi F, Fabietti GM, Crupi S, Sensi L, Britta R, Vaccaro R, Bertotto A (1992) Lymphocytes bearing the γδ T-cell receptor in acute toxoplasmosis. Immunology 76:668–670

  58. 58.

    Elloso MM, van der Heyde HC, vande Waa JA, Manning DD, Weidanz WP (1994) Inhibition of Plasmodium falciparum in vitro by human γδ T cells. J Immunol 153:1187–1194

  59. 59.

    Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D, Strominger JL, Brenner MB (1990) Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J Exp Med 171:1597–1612

  60. 60.

    Morita CT, Parker CM, Brenner MB, Band H (1994) T cell receptor usage and functional capabilities of human γδ T cells at birth. J Immunol 153:3979–3988

  61. 61.

    Follows GA, Munk ME, Gatrill AJ, Conradt P, Kaufmann SHE (1992) Gamma interferon and interleukin 2, but not interleukin 4, are detectable in γ/δ T-cell cultures after activation with bacteria. Infect Immun 60:1229–1231

  62. 62.

    Tsukaguchi K, Balaji KN, Boom WH (1995) CD+ αβ T cell and γδ T cell responses to Mycobacterium tuberculosis. Similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J Immunol 154:1786–1796

  63. 63.

    Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373:255–257

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, Y., Brenner, M.B., Bloom, B.R. et al. Recognition of nonpeptide antigens by T cells. J Mol Med 74, 223–231 (1996). https://doi.org/10.1007/BF00196576

Download citation

Key words

  • DN αβ T cells
  • γδ T cells
  • Lipid antigens
  • Nonpeptide antigens
  • Prenyl pyrophosphate antigens
  • Pyrophosphomonoesters