Advertisement

Planta

, Volume 194, Issue 2, pp 241–246 | Cite as

Aluminium polyphosphate complexes in the mycorrhizal basidiomycete Laccaria bicolor: A 27Al-nuclear magnetic resonance study

  • Francis Martin
  • Patrice Rubini
  • Richard Côté
  • Ingrid Kottke
Article

Abstract

The techniques of 27Al- and 31P-nuclear magnetic resonance (NMR) spectroscopy were used to investigate the interactions of aluminium with intracellular ligands within the mycelium of the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton (S238). The vegetative mycelium was grown on medium containing 0.5 mM AlCl3 for 0.5 to 3 d. The 27Al-NMR spectra showed that aluminium was rapidly taken up and accumulated into polyphosphate complexes in the vacuole. Comparison with Al-polyphosphate complexes obtained in vitro on model systems indicated that Al forms at least three mixed-solvation complexes with Pi and polyphosphates, that there is more than one complex present under any set of conditions, and that the equilibrium between these complexes shifts dramatically with Al concentration in the medium. The high phosphate concentrations in the growth medium favoured the accumulation of the Al-polyphosphate complexes. When mycelium containing Al-polyphosphate complexes was transferred to Al-free nutrient solution for 9 d, the Alpolyphosphate complexes were not remobilized. The sequestration of Al in the polyphosphate complexes could therefore make a significant contribution to the protection of mycorrhizal plants against aluminium toxicity.

Key words

Aluminium Ectomycorrhizal fungus Laccaria Phosphate Polyphosphate 

Abbreviations

NMR

nuclear magnetic resonance

PolyP

polyphosphate(s)

PP1

terminal phosphate of PolyP

PP3

middle phosphate of PolyP

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauvoit, B., Rigoulet, M., Raffard, G., Canioni, P., Guerin, B. (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry 30, 11212–11220Google Scholar
  2. Cramer, C.L., Davis, R.H. (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J. Biol. Chem. 259, 5152–5157Google Scholar
  3. Cumming, J.R., Weinstein, L.H. (1990) Nitrogen sources effects on Al toxicity in nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings. I. Growth and nutrition. Can. J. Bot. 68, 2644–2652Google Scholar
  4. Delhaize, E., Craig, S., Beaton, C.D., Bennet, R.J., Jagadish, V.C., Randall, P.J. (1993a) Aluminium tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminium in root apices. Plant Physiol. 103, 685–693Google Scholar
  5. Delhaize, E., Ryan, P.R., Randall, P.J. (1993b) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol. 103, 685–693Google Scholar
  6. Delpuech, J.J. (1983) Aluminium-27. In: NMR of newly accessible nuclei, vol. 2, pp. 153–195, Lazlo, P., ed. Academic Press, New YorkGoogle Scholar
  7. Denny, H.J., Wilkins, D.A. (1987) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106, 545–553Google Scholar
  8. Foy, C.D. (1984) Physiological effects of hydrogen, aluminium, and manganese toxicities in acid soil. In: Soil acidity and liming. Agro. Monog. 12, pp. 57–97, 2nd edn. Am. Soc. Agronomy-Crop Soil Soc. of America-Soil Science Soc. Am.Google Scholar
  9. Godbold, D.L., Fritz, E., Hüttermann, A. (1988) Aluminium toxicity and forest decline. Proc. Natl Acad. Sci. USA 85, 3888–3892Google Scholar
  10. Guida, L., Saidi, Z., Hughes, M.N., Poole, R.K. (1991) Aluminium toxicity and binding to Escherichia coli. Arch. Microbio. 156, 507–512Google Scholar
  11. Haug, A. (1984) Molecular aspects of aluminium toxicity. Crit. Rev. Plant Sci. 1, 345–373Google Scholar
  12. Hodson, M.J., Wilkins, D.A. (1991) Localization of aluminium in the roots of Norway spruce (Picea abies (L.) Karst.) inoculated with Paxillus involutus fr. New Phytol. 118, 273–278Google Scholar
  13. Horst, W.J., Wagner, A., Marschner, H. (1983) Effects of aluminium on root growth, cell-division rate and mineral element contents of Vigna unguiculata genotypes. Z. Pflanzenphysiol. 109, 95–103Google Scholar
  14. Huang, J.W., Grunes, D.L., Kochian, L.V. (1993) Aluminium effects on calcium (45Ca2+) translocation in aluminium-tolerant and aluminium-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol. 102, 85–93Google Scholar
  15. Jentschke, G., Godbold, D.L., Hüttermann, A. (1991) Culture of mycorrhizal tree seedlings under controlled conditions: effects of nitrogen and aluminium. Physiol. Plant. 81, 408–416Google Scholar
  16. Karlik, S.J., Elgavish, G.A., Pillal, R.P., Eichhorn, G.L. (1982) Aluminium-27 NMR studies of Al(III)-phosphate complexes in aqueous solution. J. Magn. Res. 49, 164–167Google Scholar
  17. Karlik, S.J., Elgavish, G.A., Eichhorn, G.L. (1983) Multinuclear NMR studies on Al(III) complexes of ATP and related compounds. J. Am. Chem. Soc. 105, 602–609Google Scholar
  18. Klionsky, D.J., Herman, P.K., Emr, S.D. (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54, 266–292Google Scholar
  19. Kochian, L.V., Shaff, J.E. (1991) Investigating the relationship between aluminium toxicity, root growth and root-generated ion currents. In: Plant-soil interaction at low pH, pp. 769–778, Wright, R.I., Baligar, V.C., Murrman, R.P., eds Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  20. Kottke, I. (1991) Electron energy loss spectroscopy and imaging techniques for subcellular localization of elements in mycorrhizas. Methods Microbiol. 23, 369–382Google Scholar
  21. Lapeyrie, F.F., Chilvers, G.A., Douglass, P.A. (1984) Formation of metachromatic granules following phosphate uptake by mycelial hyphae of an ectomycorrhizal fungus. New Phytol. 98, 345–360Google Scholar
  22. MacFall, J.S., Slack, S.A., Wehrli, S. (1992) Phosphorus distribution in red pine roots and the ectomycorrhizal fungus Hebeloma arenosa. Plant Physiol. 100, 713–717Google Scholar
  23. Martin, F. (1991) Nuclear magnetic resonance studies in ectomycorrhizal fungi. Methods Microbiol. 23, 121–148Google Scholar
  24. Martin, R.B. (1992) Aluminium speciation in biology. In: Aluminiun in biology and medicine. Ciba Found. Symp. 169, 5/2-25Google Scholar
  25. Martin, F., Canet, D., Rolin, D., Marchai, J.P., Larher, F. (1983) Phosphorus-31 nuclear magnetic resonance study of polyphosphate metabolism in intact ectomycorrhizal fungi. Plant Soil 71, 469–476Google Scholar
  26. Martin, F., Marchai, J.P., Timinska, A., Canet, D. (1985) The metabolism and physical state of polyphosphates in ectomycorrhizal fungi. A 31P nuclear magnetic resonance study. New Phytol. 101, 275–290Google Scholar
  27. Miller, J.J. (1984) In vitro experiments concerning the state of polyphosphate in the yeast vacuole. Can. J. Microbiol. 30, 236–246Google Scholar
  28. Nagata, T., Hayatsu, M., Kosuge, N. (1991) Direct observation of aluminium in plants by nuclear magnetic resonance. Anal. Sci. 7, 213–215Google Scholar
  29. Nagata, T, Hayatsu, M., Kosuge, N. (1993) Aluminium kinetics in the tea plant using 27Al and 19F NMR. Phytochemistry 32, 771–775Google Scholar
  30. Navon, G., Shulman, R.G., Yamane, T., Eccleshall, T., Keng-Bon, Lam, Baronofsky, J., Marmur, J. (1979) Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18, 4487–4499Google Scholar
  31. Parker, D.R., Norvell, W.A., Chaney, R.L. (1991) GEOCHEM-PC: a chemical speciation program for IBM and compatible, personal computers. In: Chemical equilibrium and reaction models (Soil Science Society of America special publication, vol. 20), pp. 1–24, Loeppert, R.H., ed. American Society Agronomy, MadisonGoogle Scholar
  32. Pettersson, A., Hällbom, L., Bergman, B. (1985) Physiological and structural responses of the cyanobacterium Anabaena cylindrica to aluminium. Physiol. Plant. 63, 153–158Google Scholar
  33. Roberts, J.K.M., Wade-Jardetzky, N., Jardetzky, O. (1981) Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry 20, 5389–5394Google Scholar
  34. Shanks, J.V., Bailey, J.E. (1990) Elucidation of the cytoplasmic and vacuolar components in the inorganic phosphate region in the 31P NMR spectrum of yeast. Biotechnol. Bioeng. 35, 1102–1110Google Scholar
  35. Shepherd, V.A., Orlovich, D.A., Ashford, A.E. (1993) A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. J. Cell Sci. 104, 495–507Google Scholar
  36. Väre, H. (1990) Aluminium polyphosphate in the ectomycorrhizal fungus Suillus variegatus (fr.) O. Kuntze as revealed by energy dispersive spectrometry. New Phytol. 116, 663–668Google Scholar
  37. Wilkins, D.A. (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agric. Ecosyst. Environ. 35, 245–260Google Scholar
  38. Woolhouse, H.W. (1983) Toxicity and tolerance in the response of plants to metals. In: Encyclopedia of plant physiology, vol. 12C, pp. 245–300, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Francis Martin
    • 1
  • Patrice Rubini
    • 2
  • Richard Côté
    • 1
  • Ingrid Kottke
    • 3
  1. 1.Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de NancyChampenouxFrance
  2. 2.Laboratoire de Chimie Physique Organique (LESOC, UA CNRS 406), Faculté des Sciences, Université de Nancy IVandœuvre-lès-Nancy CedexFrance
  3. 3.Universität Tübingen, Institut für Botanik, Spezielle Botanik, MykologieTübingenGermany

Personalised recommendations