Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Histological identification of osteocytes in the allegedly acellular bone of the sea breams Acanthopagrus australis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei)

  • 173 Accesses

  • 27 Citations

Abstract

The bone of advanced teleost fishes such as those of the family Sparidae is said to lack osteocytes or to be acellular. Acellularity has been determined by apparent lack of osteocyte lacunae. This study questions the validity of this criterion. Scanning electron and light microscopy of paraffin and resin sections were used to show that the sides of sea bream mandibles consist of laminar parallel-fibred bone that we call tubular bone, because it contains tubules, and localised regions of Sharpey fibre bone. Osteocytes lie along the walls of tubules that also contain collagen fibril bundles (T-fibres), or in the lumens of tubules that do not contain T-fibres. We show that the osteocytes are derived from osteoblasts. The T-fibre system is different from other fibre systems that have been described. The tubules enclose wide T-fibres (lenticular in cross-section, maximum width about 8 μm) that taper at their ends and continue as thin T-fibres (round in crosssection, about 2 μm wide). The T-fibres originate in the periosteum. In mature tubular bone, spaces of increasing size develop around the osteocytes. Osteocytes are released from the bone matrix and become postosteocytes or bone-lining cells. Secondary bone lines the largest spaces. In Sharpey fibre bone, small osteocytes in small lacunae (about 2 μm wide) are found in columns parallel to the Sharpey fibres. Large osteocytes are found in large round spaces and are much larger than comparable osteocytes in lacunae in the bone of the salmon Salmo salar. We conclude that an absence of visible or conventional osteocyte lacunae does not mean that the cells themselves are absent. There are cells and two types of collagen fibre bundle in the tubules. The cells are osteocytes derived from osteoblasts, and these osteocytes apparently resorb bone with the result that large amounts of bone are destroyed. “Acellular” tubular and Sharpey fibre bone are types of cellular bone that differ from each other and from conventional cellular bone.

This is a preview of subscription content, log in to check access.

References

  1. Baud CA (1968) Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop 56:227–236

  2. Baud CA (1976) Histophysiology of the osteocyte: an introduction to the morphometry of periosteocytic lacunae. In: Jaworski ZF (ed) Bone histomorphometry. Proceedings of the First Workshop, Ottawa, 1973. University of Ottawa Press, Ottawa, pp 267–272

  3. Baud CA (1977) Osteocyte, osteocytic functions and morphometry of periosteocytic lacunae. In: Meunier PJ (eds) Bone histomorphometry. Proceedings of the Second Workshop, Lyon, France, 1976. Société de Lanouvelle Imprimerie Fournié, France, pp 429–432

  4. Baud CA, Boivin G (1978) Effects of hormones on osteocyte function and perilacunar wall structure. Clin Orthop 136:270–281

  5. Boyde A (1981) Evidence against osteocytic osteolysis. In: Jee WSS, Parfitt AM (eds) Proceedings of the Third International Workshop on Bone Histomorphometry, Sun Valley, Idaho, 1980. Societe Nouvelle de Publications Médicales et Dentaires, Paris, pp 239–255

  6. Boyde A, Hobdell M (1969) Scanning electron microscopy of lamellar bone. Z Zellforsch Mikrosk Anat 93:213–231

  7. Boyde A, Jones SJ (1968) Scanning electron microscopy of cementum and Sharpey fibre bone. Z Zellforsch 92:536–548

  8. Canè V, Marotti G, Volpi G, Zaffe D, Palazzini S, Remaggi F, Muglia MA (1982) Size and density of osteocyte lacunae in different regions of long bones. Calcif Tissue Int 34:558–563

  9. Cohn SA (1972a) A re-examination of Sharpey's fibres in alveolar bone of the marmoset (Saguinus fuscicollis). Arch Oral Biol 17:261–269

  10. Cohn SA (1972b) A re-examination of Sharpey's fibres in alveolar bone of the mouse. Arch Oral Biol 17:255–260

  11. Dacke CG (1979) Calcium regulation in sub-mammalian vertebrates. Academic Press, London

  12. Duncan H (1977) Osteoblasts and osteoid a hard look. In: Meunier PJ (ed) Bone Histomorphometry. Proceedings of the Second Workshop, Lyon, France, 1976. Société de Lanouvelle Imprimerie Fournie, France, pp 291–296

  13. Ekanayake S, Hall BK (1987) The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J Morphol 193:253–261

  14. Ekanayake S, Hall BK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182:241–249

  15. Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues. Part I. Tex J Sci 8:405–443

  16. Fleming WR (1974) Electrolyte metabolism of teleosts — including calcified tissues. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 8. Deuterostomians, cyclostomes, and fishes. Academic Press, New York, pp 471–508

  17. Francillon-Vieillot H, Buffrénil V de, Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberberg L, Ricqlès A de (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends, vol 1. Van Nostrand Reinhold, New York, pp 471–530

  18. Hughes DR, Bassett JR, Moffat LA (1994) Structure and origin of the tooth pedicel (the so-called bone of attachment) and dental-ridge bone in the mandibles of the sea breams Acanthopagrus australis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei). Anat Embryol 189:51–69

  19. Huysseune A, Sire J-Y (1992) Development of cartilage and bone tissues of the anterior part of the mandible in cichlid fish: a light and TEM study. Anat Rec 233:357–375

  20. Huysseune A, Verraes W (1986) Chondroid bone on the upper pharyngeal jaws and neurocranial base in the adult fish Astatotilipia elegans. Am J Anat 177:527–535

  21. Jande SS (1971) Fine structural study of osteocytes and their surrounding bone matrix with respect to their age in young chicks. J Ultrastruct Res 37:279–300

  22. Jones SJ, Boyde A (1976) Is there a relationship between osteoblasts and collagen orientation in bone? Isr J Med Sci 12:98–107

  23. Junqueira LCU, Cosermelli W, Brentani R (1978) Differential staining of collagens type I, II and III by Sirius red and polarization microscopy. Arch Histol Cytol 41:267–274

  24. Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method of collagen detection in tissue sections. Histochem J 11:447–455

  25. Klaatsch H (1890a) Zur Morphologic der Fischschuppen und zur Geschichte der Hartsubstanzgewebe (I–III). Morphol Jahrb 16:97–202

  26. Klaatsch H (1890b) Zur Morphologie der Fischschuppen und zur Geschichte der Hartsubstanzgewebe (IV–VII). Morphol Jahrb 16:209–258

  27. Kolliker A (1859) On the different types in the microscopic structure of the skeleton of osseous fishes. Proc R Soc Lond [Biol] 9:656–668

  28. Kolliker A (1889) Handbuch der Gewebelehre des Menschen, 6th edn. Engelmann, Leipzig (see Tretjakoff and Chinkus 1927)

  29. Lopez E (1970) Demonstration of several forms of decalcification in bone of the teleost fish, Anguilla anguilla L. Calcif Tissue Res 4 [Suppl]:83

  30. Lopez E, Peignoux-Deville J, Lallier F, Martelly E, Milet C (1976) Effects of calcitonin and ultimobranchialectomy (UBX) on calcium and bone metabolism in the eel, Anguilla anguilla L. Calcif Tissue Res 20:173–186

  31. Lopez E, Baud CA, Boivin G, Lallier F (1978) Etude ultrastructurale, chez un poisson téléostéen l'anguille (Anguilla anguilla L.), des processus de minéralisation dans les cas d'une ossification périchondrale de l'arc brancial et d'une apposition secondaire dans l'os vertébral. Ann Biol Anim Biochem Biophys 18:105–117

  32. Luna LG (1988) A useful method for demonstrating bone canaliculi. Histo-logic 18:46–47

  33. Marotti G (1981) Three-dimensional study of osteocyte lacunae. In: Jee WSS, Parfitt AM (eds) Bone histomorphometry. Proceedings of the Third International Workshop, Sun Valley, Idaho, 1980. Société Nouvelle de Publications Médicales et Dentaires, Paris, pp 223–229

  34. Marotti G (1990) The original contributions of the scanning electron microscope to the knowledge of bone structure. In: Bonucci E, Motto PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic, Boston, pp 19–39

  35. Meunier FJ (1983) Les tissus osseux des Ostéichthyens. Structure, genèse, croissance et évolution. Arch Doc Inst Ethnol, microédition, Mus. Natl Hist Nat, SN 82-6000-328, Doctoral thesis

  36. Meunier FJ (1987) Os cellulaire, os acellulaire et tissues dérivés chez les ostéichthyens: les phénomenes de l'acellularisation et de la perte de minéralisation. Ann Biol 26:201–233

  37. Meunier FJ (1989) The acellularisation process in osteichthyan bone. In: Splechtna H, Hilgers H (eds) Trends in vertebrate morphology. Proceedings of the 2nd International Symposium on Vertebrate Morphology, Vienna, 1986. Fischer, Stuttgart, pp 443–446

  38. Meunier FJ, Huysseune A (1992) The concept of bone tissue in osteichthyes. Neth J Zool 42:445–458

  39. Meunier FJ, Sire J-Y (1981) Sur la structure et la minéralisation des écailles de germon, thunnus alalunga (Téleostéen, Perciforme, Thunnidaie). Bull Soc Zool Fr 106:327–336

  40. Miller SC, Jee WSS (1987) The bone lining cell: a distinct phenotype? Calcif Tissue Int 41:1–5

  41. Miller SC, Jee WSS (1992) Bone-lining cells. In: Hall BK (ed) Bone, vol 4. Bone metabolism and mineralization. CRC Press, Boca Raton, Ann Arbor, pp 1–19

  42. Miller SC, Bowman BM, Smith JM, Jee WSS (1980) Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. Anat Rec 198:163–173

  43. Miller SC, Saint-Georges L de, Bowman BM, Jee WSS (1989) Bone-lining cells: structure and function. Scanning Micros 3:953–961

  44. Moss ML (1961 a) Osteogenesis of acellular teleost fish bone. Am J Anat 108:99–110

  45. Moss ML (1961 b) Studies of the acellular bone of teleost fish. I. Morphological and systematic variations. Acta Anat 46:343–362

  46. Moss ML (1962) Studies of the acellular bone of teleost fish. II. Response to fracture under normal and acalcemic conditions. Acta Anat 48:46–60

  47. Moss ML (1963) The biology of acellular teleost bone. Ann NY Acad Sci 109:337–350

  48. Moss ML (1964) Development of cellular dentin and lepidosteal tubules in the bowfin, Amia calva. Acta Anat 58:333–354

  49. Moss ML (1965) Studies of the acellular bone of teleost fish. V. Histology and mineral homeostasis of freshwater species. Acta Anat 60:262–276

  50. Nickerson WS (1893) Development of the scales of Lepisosteus. Bull Mus Comp Zool 24:115–139

  51. Norris WP, Chavin W, Lombard LS (1963) Studies of calcification in a marine teleost. Ann NY Acad Sci 109:312–336

  52. Orvig T (1951) Histologic studies of placoderms and fossil elasmobranchs. 1. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2:321–454

  53. Orvig T (1957) Paleohistoligical notes. I. On the structure of the bone tissues in the scales of certain palaeonisciformes. Ark Zool 10:481–490

  54. Orvig T (1967) Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. In: Miles AEW (ed) Structural and chemical organization of teeth, vol 1. Academic Press, Now York, pp 45–110

  55. Parenti LR (1986) The phylogenetic significance of bone types in euteleost fishes. Zool J Linn Soc 87:37–51

  56. Parfitt AM (1977) The cellular basis of bone turnover and bone loss. A rebuttal of the osteolytic resorption-bone flow theory. Clin Orthop 127:236–247

  57. Parfitt AM (1990) Bone-forming cells in clinical conditions. In: Hall BK (ed) Bone, vol 1. The osteoblast and osteocyte. Telford Caldwell, New Jersey, pp 351–429

  58. Parfitt AM, Villanueva AR, Crouch MM, Mathews CHE, Duncan H (1977) Classification of osteoid seams by combined use of cell morphology and tetracycline labelling. Evidence for intermittency of mineralization. In: Meunier PJ (ed) Bone histomorphometry. Proceedings of the Second Workshop, Lyon, France, 1976. Société de Lanouyelle Imprimerie Fournié, France, pp 299–309

  59. Ricqlès A de, Meunier FJ, Castanet J, Francillon-Vieillot H (1991) Comparative microstructure of bone. In: Hall BK (ed) Bone, vol 3. Bone matrix and bone-specific products. CRC Press, Boca Raton, Ann Arbor, Boston, pp 1–78

  60. Roush JK, Breur GJ, Wilson JW (1988) Picrosirius red staining of dental structures. Stain Technol 63:363–367

  61. Ruben JA, Bennett A (1981) Intense, exercise, bone structure and blood calcium levels in vertebrates. Nature 291:411–413

  62. Ruben JA, Bennett A (1987) The evolution of bone. Evolution 4:1187–1197

  63. Schenk RK, Olah AJ, Herrmann W (1984) Preparation of calcified tissues for light microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 1–56

  64. Schmid-Monnard C (1883) Die Histogenese des Knochens der Teleostier. Z Wiss Zool 39:97–136

  65. Scott JE (1985) Proteoglycan histochemistry — a valuable tool for connective tissue biochemists. Matrix 5:541–575

  66. Simkiss K (1974) Calcium metabolism of fish in relation to ageing. In: Bagenal TB (ed) The ageing of fish. Unwin, Surrey, England, pp 1–12

  67. Sire J-Y (1989) Scales in young Polypterus senegalus are elasmoid: new phylogenetic implications. Am J Anat 186:315–323

  68. Sire J-Y (1990) From ganoid to elasmoid scales in the actinopterygian fishes. Neth J Zool 40:75–92

  69. Sire J-Y, Huysseune A (1993) Fine structure of the developing frontal bone and scales of the cranial vault in the cichlid fish Hemichromis bimaculatus (Teleostei, Perciformes). Cell Tissue Res 273:511–524

  70. Sire J-Y, Huysseune A, Meunier FJ (1990) Osteoclasts in teleost fish: Light- and electron-microscopical observations. Cell Tissue Res 260:85–94

  71. Stephan (1990) Recherches histologiques sur la structure de tissue osseux des Poissons. Bull Sci Fr Belg 33:281–429

  72. Tonna EA (1972) Electron microscopic evidence of alternating osteocytic-osteoclastic and osteoplastic activity in the perilacunar walls of aging mice. Connec Tissue Res 1:221–230

  73. Tretjakoff D, Chinkus F (1927) Das Knochengewebe der Fische. Z Anat Entwicklungsgesch 83:363–396

  74. Urist MR (1964) The origin of bone. Discovery 25:13–19

  75. Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56

  76. Wendelaar Bonga SE, Lammers PI (1982) Effects of calcitonin on ultrastructure and mineral content of bone and scales of the cichlid teleost Sarotherodon mossambicus. Gen Comp Endocrinol 48:60–70

  77. Williamson WC (1849) On the microscopic structure of the scales and dermal teeth of some ganoid and placoid fish. Philos Trans R Soc Lond [Biol] 139:435–475

  78. Zylberberg L, Géraudie J, Meunier F, Sire J-Y (1992) Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone, vol 4. Bone metabolism and mineralization. CRC Press, Boca Raton, Ann Arbor, pp 171–224

Download references

Author information

Correspondence to Jack R. Bassett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hughes, D.R., Bassett, J.R. & Moffat, L.A. Histological identification of osteocytes in the allegedly acellular bone of the sea breams Acanthopagrus australis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei). Anat Embryol 190, 163–179 (1994). https://doi.org/10.1007/BF00193413

Download citation

Key words

  • Acellular fish bone
  • Osteocyte
  • Microscopy
  • Sparidae
  • Salmon