Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The effects of giant Andean rosettes on surface soils along a high paramo toposequence

  • 46 Accesses

  • 6 Citations

Abstract

The effects on soils of two caulescent rosette species, Coespeletia timontensis and Espeletia schultzii, were studied along a slope toposequence in the Venezuelan Andes. All soil properties examined, except texture, were significantly affected by the presence of plants, but the first species had a stronger influence than the second. This resulted from greater accumulation of organic matter under C. timotensis, which has a larger biomass than E. schultzii. When compared to adjacent bare soils, organic matter, cation-exchange capacity, and total N doubled beneath the first species but increased ≤ 29% below the other. Soil color became darker, and bulk density dropped about 14%, under both species. Concentrations of exchangeable bases (Ca, Mg, K) increased from 4 to 31 times below C. timotensis; available P increased 2 to 5 times. Soil pH was raised by 0.7 units, and percentage of base saturation (PBS) was 2 to 3 times greater than in control soils. In contrast, cations below E. schultzii only increased from 38 to 260%, and P was not affected. Soil pH was raised by 0.08 units, and PBS by only 8.6%. The general effect of the Andean rosettes was to produce soils which resemble those found on lower slope segments, but the influence of plants was considerably more pronounced than that of topographic position.

This is a preview of subscription content, log in to check access.

References

  1. Aandahl, A. R.: The characterization of slope positions and their influence on the total nitrogen content of a few virgin soils of western Iowa. Soil Sci. Soc. Am. Proc. 13, 449–454 (1948).

  2. Acton, D. F.: The relationship of pattern and gradient of slopes to soil type. Can. J. Soil Sci. 45, 96–101 (1965).

  3. Allt, G.: pH and soil moisture in the substrate of giant Senecios and Lobelias on Mt. Kenya. East African Wildlife J. 6, 71–74 (1968).

  4. Ball, D. F.: Loss-on-ignition as an estimate of organic matter and organic carbon in noncalcareous soils. J. Soil Sci. 15, 84–92 (1964).

  5. Beck, E.; Rehder, H.; Pongratz, P.; Scheibe, R.; Senser, M.: Ecological analysis of the boundary between the afroalpine vegetation types “Dendrosenecio woodlands” and “Senecio brassica-Lobelia keniensis community” on Mt. Kenya. J. East Africa Nat. Hist. Soc. and Nat. Museum 172, 1–11 (1981).

  6. Bernetti, G.; Mancini, F.; Sanesi, G.: Alcune osservazioni sull'insediamento della vegetazione e sulla pedogenesi nel morenico recente del Travignolo (Pale di S. Martino). Nuovo Giorn. Bot. Italiano 65, 214–236 (1958).

  7. Blake, G. R.: Bulk density. Agronomy 9 part 1, 374–390 (1965).

  8. Brady, N. C.: The Nature and Properties of Soils. 8th edn. Macmillan, New York 1974.

  9. Bremner, J. M.: Total nitrogen. Agronomy 9, part 2, 1149–1178 (1965).

  10. Buol, S. W.; Hole, F. D.; McCracken, R. J.: Soil Genesis and classification. 3rd edn. Iowa State University Press, Ames, Iowa 1989.

  11. Challinor, D.: Alteration of surface soil characteristics by four tree species. Ecology 49, 286–290 (1968).

  12. Chapin, F. S.: The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11, 233–260 (1980).

  13. Chapman, H. D.: Cation-exchange capacity. Agronomy 9, part 2, 891–901 (1965).

  14. Charley, J. L.; Ward, S. C.: Tree-induced soil chemical and biological patterns. Australian For. Res. Newsl. 6, 103 (1980).

  15. Charley, J. L.; West, N. E.: Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J. Ecol. 63, 945–963 (1975).

  16. Crocker, R. L.: The plant factor in soil formation. Proc. 9th Pacific Sci. Congr. 18, 84–90 (1960).

  17. Crocker, R. L.; Dickson, B. A.: Soil development on the recessional moraines of the Herbert and Mendenhall glaciers, Southeastern Alaska. J. Ecol. 45, 169–185 (1957).

  18. Crocker, R.L.; Major, J.: Soil development in relation to vegetation and surface age at Glacier bay, Alaska. J. Ecol. 43, 427–448 (1955).

  19. Cuatrecasas, J.: Speciation and radiation of the Espeletiinae in the Andes. In: Vuilleumier, F.; Monasterio, M. (eds.), High Altitude Tropical Biogeography, pp. 267–303. Oxford University Press, New York 1986.

  20. Curtis, R. O.; Post, B. W.: Estimating bulk density from organic-matter content in some Vermont Forest soils. Soil Sci. Soc. Am. Proc. 28, 285–286 (1964).

  21. Dickson, B. A.; Crocker, R. L.: A chronosequence of soils and vegetation near Mount Shasta, California. III. Some properties of the mineral soils. J. Soil Sci. 5, 173–191 (1954).

  22. Fariñas, M.; Monasterio, M.: La vegetación del Páramo de Mucubají. In: Monasterio, M. (ed.), Estudios Ecológicos en los Páramos Andinos, pp. 263–307. Ed. Universidad de Los Andes, Mérida, 1980.

  23. Fireman, M.; Hayward, H. E.: Indicator significance of some shrubs in the Escalante Desert, Utah. Bot. Gazette 114, 143–155 (1952).

  24. Förster, H.: Properties, dynamics, and association of soils on high elevations of the Bavarian forest (Germany) as illustrated by a toposequence on gneiss debris. Catena 20, 563–579 (1993).

  25. Foth, H. D.: Fundamentals of Soil Science, 8th ed. Wiley, New York 1990.

  26. Furley, P. A.: Soil-slope-plant relationships in the northern Maya Mtns, Belize, Central America. I. The sequence over metamorphic sandstones and shales. J. Biogeography 1, 263–279 (1974).

  27. García-Moya, E.; McKell, C. M.: Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51, 81–88 (1970).

  28. Gersper, P. L.; Holowaychuk, N.: Some effects of stem flow from forest canopy trees on chemical properties of soils. Ecology 52, 691–702 (1971).

  29. Heady, H. F.; Zinke, P. J.: Vegetational changes in Yosemite Valley. National Park Service, Occasional Paper 5, 1–25 (1978).

  30. Jenny, H.: Vegetationsbedingungen und Pflanzengesellschaften auf Fellsschutt. Phytosoziologische Untersuchungen in den glarner Alpen. Beihefte z. Botanischen Zentralblatt 46, 119–296 (1930).

  31. Jenny, H.: Factors of Soil Formation. McGraw-Hill, New York 1941.

  32. Jenny, H.: Role of the plant factor in the pedogenic functions. Ecology 39, 5–16 (1958).

  33. Jenny, H.: The Soil Resource: Origin and Behavior. Springer-Verlag, New York 1980.

  34. Jones, T. A.: Skewness and kurtosis as criteria of normality in observed frequency distributions. J. Sedim. Petrol. 39, 1622–1627 (1969).

  35. Kellman, M.: Soil enrichment by Neotropical savanna trees. J. Ecol. 67, 565–577 (1979).

  36. Klemmedson, J. O.: Topofunction of soils and vegetation in a range landscape. Am. Soc. Agronomy, Special Publ. 5, 176–189 (1964).

  37. Konishchev, V. N.: Characteristics of cryogenic weathering in the permafrost zone of the European USSR. Arctic and Alpine Research 14, 261–265 (1982).

  38. Lee, W. G.; Hewitt, A. E.: Soil changes associated with development of vegetation on an ultramafic scree, northwest Otago, New Zealand. J. Royal Society, New Zealand 12, 229–242 (1982).

  39. Liegel, E. A.; Simson, C. R.; Schulte, E. E. (eds.): Wisconsin procedure for soil testing, plant analysis and feed and forage analysis. University of Wisconsin Extension, Soil Fertility Series No. 6. 1980.

  40. Miller, N. G.; Alpert, P.: Plant associations and edaphic features of a high Arctic mesotopographic setting. Arctic and Alpine Research 16, 11–24 (1984).

  41. Milne, G.: Some suggested units of classification and mapping, particularly for East African soils. Soil Research 4, 183–198 (1935).

  42. Monasterio, M.: El páramo desértico en el Altiandino de Venezuela. In: Salgado-Labouriau, M. L. (ed.), El Medio Ambiente Páramo, pp. 117–146. Ed. CEA, IVIC, Caracas 1979.

  43. Monasterio, M.; Las formaciones vegetales de los páramos de Venezuela. In: Monasterio, M. (ed.), Estudios Ecológicos en los páramos Andinos, pp. 93–158. Ed. Universidad de Los Andes, Mérida 1980.

  44. Munsell Color: Munsell Soil Color Charts. Macbeth, Newburgh, New York 1992.

  45. Olsen, S. R.; Dean, L. A.: Phosphorus. Agronmy 9 part 2, 1035–1049 (1965).

  46. Page, G.: Effects of forest cover on the properties of some Newfoundland forest soils. Dept. Environment, Can. Forest Serv. (Ottawa) Publ. 1332, 1–32 (1974).

  47. Pérez, F. L.: Needle-ice activity and the distribution of stem-rosette species in a Venezuelan paramo. Arctic and Alpine Research 19, 135–153 (1987a).

  48. Pérez, F. L.: Soil moisture and the upper altitudinal limit of giant paramo rosettes. J. Biogeography 14, 173–186 (1987b).

  49. Pérez, F. L.: Downslope stone transport by needle ice in a high Andean area (Venezuela). Revue de Géomorphologie Dynamique 36, 33–51 (1987c).

  50. Pérez, F. L.: Conifer litter and organic matter accumulation at timberline, Lassen Peak. National Park Service Transactions & Proceedings Series 8, 207–224 (1990).

  51. Pérez, F. L.: Particle sorting due to off-road vehicle traffic in a high Andean paramo. Catena 18, 239–254 (1991a).

  52. Pérez, F. L.: Soil moisture and the distribution of giant Andean rosettes on talus slopes of a desert paramo. Climate Research 1, 217–231 (1991b).

  53. Pérez, F. L.: The influence of organic matter addition by caulescent Andean rosettes on surficial soil properties. Geoderma 54, 151–171 (1992a).

  54. Pérez, F. L.: Processes of turf exfoliation (Rasenabschälung) in the high Venezuelan Andes. Zeitschr. f. Geomorphologie N. F. 36, 81–106 (1992b).

  55. Pérez, F. L.: Talus movement in the high equatorial Andes: A synthesis of ten years of data. Permafrost and Periglacial Processes 4, 199–215 (1993).

  56. Pérez, F. L.: Geobotanical influence of talus movement on the distribution of caulescent Andean rosettes. Flora 189, 353–371 (1994).

  57. Pérez, F. L.: Soils and geoecology of caulescent paramo rosettes along a high-Andean toposequence. Mountain Research and Development 15, 133–152 (1995).

  58. Rickard, W. H.; Keough, R.F.: Soil-plant relationships of two steppe desert shrubs. Plant and Soil 29, 205–212 (1968).

  59. Ronchetti, G.: Osservazioni pedologiche nel bacino del torrente Ridanna (Bolzano). Annali Accad. Italiana Scienze Forestali 11: 199–246 (1962).

  60. Smith, A. P.: Function of dead leaves in Espeletia schultzii (Compositae), an Andean caulescent rosette species. Biotropica 11, 43–47 (1979).

  61. Smith, A. P.: Growth and population dynamics of Espeletia (Compositae) in the Venezuelan Andes. Smithsonian Contributions to Botany 48, 1–45 (1981).

  62. Soil Survey Staff: Keys to Soil Taxonomy, 4th edn. SMSS Technical Monograph 19, Virginia Polytechnic Institute, Blacksburg, Virginia 1990.

  63. Sparrow, G. W. A.: Some environmental factors in the formation of slopes. Geographical J. 132, 390–395 (1966).

  64. Sturm, H.: Zur Bodenfauna der andinen Paramoregion. Amazoniana 8, 129–147 (1983).

  65. Sturm, H.; Rangel, O.: Ecología de los Páramos Andinos: una visión preliminar integrada. Univ. Nacional de Colombia, Bogotá 1985.

  66. Thouret, J.-C.: Obervaciones geopedológicas a lo largo del transecto del Parque Los Nevados. In: Van der Hammen, T.; Pérez, A.; Pinto, P. (eds.), La Cordillera Central Colombiana. transecto Parque Los Nevados (introducción y datos iniciales), pp. 113–141. J. Cramer, Vaduz 1983.

  67. Tiedemann, A. R.; Klemmedson, J. O.: Nutrient availability in desert grassland soils under mesquite (Prosopis juliflora) trees and adjacent open areas. Soil Sci. Soc. Am. Proc. 37, 107–111 (1973).

  68. Tiedemann, A. R.; Klemmedson, J. O.: Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manag, 30, 361–367 (1977).

  69. Vareschi, V.: Flora de los Páramos de Venezuela. Ed. Rectorado, Universidad de Los Andes, Mérida 1970.

  70. Zinke, P. J.: The pattern of individual forest trees on soil properties. Ecology 43, 130–133 (1962).

  71. Zinke, P. J.; Crocker, R. L.: The influence of giant sequoia on soil properties. Forest Sci. 8, 2–11 (1962).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pérez, F.L. The effects of giant Andean rosettes on surface soils along a high paramo toposequence. GeoJournal 40, 283–298 (1996). https://doi.org/10.1007/BF00192585

Download citation

Keywords

  • Biomass
  • Organic Matter
  • Surface Soil
  • Bulk Density
  • Soil Property