Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The responses of central octavolateralis cells to moving sources

  • 40 Accesses

  • 8 Citations

Abstract

Mechanosensory lateral line units recorded from the medulla (medial octavolateralis nucleus) and midbrain (torus semicircularis) of the bottom dwelling catfish Ancistrus sp. responded to water movements caused by an object that passed the fish laterally. In terms of peak spike rate or total number of spikes elicited responses increased with object speed and sometimes showed saturation (Figs. 7, 14). At sequentially greater distances the responses of most medullary lateral line units decayed with object distance (Fig. 11). Units tuned to a certain object speed or distance were not found. The signed directionality index of most lateral line units was between −50 and +50, i.e. these units were not or only slightly sensitive to the direction of object motion (Figs. 10, 17). However, some units were highly directionally sensitive in that the main features of the response histograms and/or peak spike rates clearly depended on the direction of object movement (e.g. Fig. 9C, D and Fig. 16). Midbrain lateral line units of Ancistrus may receive input from more than one sensory modality. All bimodal lateral line units were OR units, i.e., the units were reliably driven by a unimodal stimulus of either modality. Units which receive bimodal input may show an extended speed range (e.g. Fig. 18).

This is a preview of subscription content, log in to check access.

Abbreviations

MON :

medial octavolateralis nucleus

MSR :

mean spike rate

PSR :

peak spike rate

p-p :

peak-to-peak

SDI :

signed directionality index

References

  1. Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167: 347–356

  2. Bastian J (1981a) Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. J Comp Physiol 144: 465–479

  3. Bastian J (1981b) Electrolocatiion II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol 144: 481–494

  4. Bastian J (1982) Vision and electroreception: Integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol 147: 287–297

  5. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. G Fischer, Stuttgart Jena New York pp 1–115

  6. Bleckmann H, Bullock TH (1989) Central physiology of the lateral line system, with special reference to elasmobranchs. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 387–408

  7. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625

  8. Bleckmann H, Bullock TH, Jørgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161: 67–84

  9. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128

  10. Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164: 459–474

  11. Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991a) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168: 749–757

  12. Bleckmann H, Niemann U, Fritzsch B (1991b) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314: 452–466

  13. Bleckmann H, Borchardt M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174: 305–316

  14. Bleckmann H, Mogdans J, Fleck A (1996) Integration of hydrodynamic information in the hindbrain of fishes. Mar Freshw Behav Physiol 27: 77–94

  15. Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221

  16. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127: 61–74

  17. Campenhausen C von, Reiss I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol 143: 369–374

  18. Claas B (1980) Die Projektionsgebiete des Rumpfseitenliniensystems von Sarotherodon niloticus L. (Cichlidae, Teleostei): Neuroanatomische und neurophysiologische Untersuchungen. Dissertation, Universität Bielefeld

  19. Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 409–419

  20. Coombs S (1994) Nearfield detection of dipole sources by the gold-fish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190: 109–129

  21. Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167: 557–567

  22. Coombs S, Montgomery J (1992) Fibers innervating different parts of the lateral line system of an Antarctic Notothenioid, Trematomus bernachii, have similar frequency responses despite large variation in the peripheral morphology. Brain Behav Evol 40: 217–233

  23. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178: 359–371

  24. Davenport CJ, Caprio J (1982) Taste and tactile recordings from the ramus recurrens facialis innervating flank taste buds in the catfish. J Comp Physiol 147: 217–229

  25. Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118: 22–24

  26. Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156: 267–280

  27. Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations of the functions of the lateral line and inner ear in predation. In Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 575–587

  28. Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence. J Neurobiol 13: 39–47

  29. Hassan ES (1986) On the dicrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159: 701–710

  30. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 217–228

  31. Knudsen EI (1976a) Midbrain responses to electroreceptive input in catfish: evidence of orientation preferences and somatotopic organization. J Comp Physiol 106: 51–67

  32. Knudsen EI (1976b) Midbrain units in catfish. Response properties to electoreceptive input. J Comp Physiol 109: 315–335

  33. Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173: 417–432

  34. Lamb CF, Caprio J (1993) Taste and tactile responsiveness of neurons in the posterior diencephalon of the channel catfish. J Comp Neurol 337: 419–430

  35. Lighthill J (1980) Waves in fluids. Cambridge University Press, Cambridge

  36. Marui T, Caprio J, Kijohara S, Kasahara Y (1988) Topographical organization of taste and tactile neurons in the facial lobe of the sea catfish, Plotosus lineatus. Brain Res 446: 178–182

  37. McCormick CA (1989) Central lateral line mechanosensory path-ways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 341–364

  38. Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Letters 174: 145–148

  39. Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235: 195–196

  40. Montgomery JC, Macdonald JA, Housley GD (1988) Lateral line function in an antarctic fish related to the signals produced by planktonic prey. J Comp Physiol A 163: 827–833

  41. Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphology 93: 73–86

  42. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568

  43. Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298

  44. Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflueg Arch 406: 151–157

  45. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 17–78

  46. Plassmann W (1980) Central neuronal pathways in the lateral line system of Xenopus laevis. J Comp Physiol 136: 203–213

  47. Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 445–459

  48. Rudolph P (1967) Zum Ortungsverfahren von Gyrinus substiatus Steph. Z Vergl Physiol 56: 341–375

  49. Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–481

  50. Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual sytems in teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 421–443

  51. Shanglian T, Bullock TH (1984) Physiological properties of the electro- and mechanoreceptors in catfish Ictalurus nebulosus. Scientia Sinica 10: 1023–1028

  52. Song J (1989) The lateral line system in the Florida gar, Lepisosteus platyrhincus Dekay. Dissertation, University of Michigan

  53. Stock C, Claas B, Münz H (1990) Surface wave detection by means of lateral line and somatosensory system. In: Elsner N, Roth G (eds) Brain, perception, cognition. Proc 18th Göttingen Neurobiology Conf. Thieme, Stuttgart, p 166

  54. Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the diencephalon and telencephalon of channel catfish. J Comp Neurol 312: 311–331

  55. Suga N (1967) Electrosensitivity of canal and free neuromast organs in a gynmotid electric fish. J Comp Neurol 131: 453–457

  56. Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157: 837–843

  57. Tong SL, Bullock TH (1982) The sensory functions of the cerebellum of the thornback ray, Platyrhinoidis triseriata. J Comp Physiol 148: 399–410

  58. Topp G (1983) Primary lateral line response to water surface waves in the topminnow Aplocheilus lineatus (Pisces, Cyprinodontidae). Pflueg Arch 397: 62–67

  59. Wagner H, Takahashi T (1992) Influence of temporal cues on acous tic motion-direction sensitivity of auditory neurons in the owl. J Neurophysiol 68: 2063–2076

  60. Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line sytem in teleost fishes. Brain Behav Evol 33: 34–53

  61. Weissert R, Campenhausen C von (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol 143: 375–382

  62. Wubbels RJ (1992) Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comp Biochem Physiol A 102: 19–26

  63. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158: 469–477

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller, H.M., Fleck, A. & Bleckmann, H. The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179, 455–471 (1996). https://doi.org/10.1007/BF00192313

Download citation

Key words

  • Lateral line
  • Teleost fish
  • Catfish
  • Mechanoreception