Advertisement

The clinical investigator

, Volume 70, Issue 9, pp 735–739 | Cite as

Caries susceptibility and renal excretion of calcium

  • I. Moschèn
  • W. Schobersberger
  • L. Klotz
  • E. Jarosch
  • M. Richter
  • F. Lang
Original Article

Summary

Clearance studies were performed for 2 days in two groups of age-matched young female volunteers: those with low caries prevalence and those with high caries prevalence. Both groups were kept on a low-calcium diet for 1 week and received 0.5 g calcium at the beginning of the second day. In both groups, glomerular filtration rate, urinary flow rate and renal excretions of sodium, calcium, and phosphate were subject to significant circadian variations. In both groups the administration of calcium led to a significant increase in renal excretion of sodium and calcium and a significant decrease in that of phosphate. On the first day, calcium excretion was significantly greater in those with low caries prevalence than in those with high caries prevalence, pointing to altered calcium homeostasis in this group.

Key words

Kidney Calcium Phosphate Sodium Caries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arends J, Christoffersen J (1986) The nature of early caries lesions in enamel. J Dent Res 65: 2–11.CrossRefGoogle Scholar
  2. 2.
    Axelsson P (1981) Concept and practice of plaque-control. Pediatr Dent 1: 101–113.Google Scholar
  3. 3.
    Birkhed D, Edwardsson S, Andersson H (1981) Comparison among a dip-slide test (Dentocult), plate count, and Snyder test for estimating number of lactobacilli in human saliva. J Dent Res 60: 1832–1841.CrossRefGoogle Scholar
  4. 4.
    Brändle CR, Menghini GD, Marthaler TM (1991) Kariesrisikobestimmung bei Schulkindern aufgrund mikrobiologisch-chemischer Mundflüssigkeitsanalysen und des klinischen Zahnstatus. Schweiz Monatsschr Zahnmed 101: 993–996.PubMedGoogle Scholar
  5. 5.
    Bronner F (1982) Calcium homeostasis. In: Bronner F, Coburn JW (eds) Disorders of mineral metabolism. Calcium physiology, vol. II. Academic Press, New York, pp 43–102.CrossRefGoogle Scholar
  6. 6.
    Di Stefano A, Wittner M, Gebler B, Greger R (1988) Increased Ca++ or Mg++ concentration reduces relative tight junction permeability to Na+ in the cortical thick ascending limb of Henle's loop of rabbit kidney. Renal Physiol Biochem 11: 70–79.PubMedGoogle Scholar
  7. 7.
    Ericson D, Bratthall D (1989) Simplified method to estimate salivary buffer capacity. Scand J Dent Res 97: 405–407.PubMedGoogle Scholar
  8. 8.
    Gröndahl HG, Hollender L, Malmcrona E, Sundquist B (1977) Dental caries and restorations in teenagers. Index and score system for radiographic studies of proximal surfaces. Swed Dent J 1: 45–50.PubMedGoogle Scholar
  9. 9.
    Heintze U, Birkhed D, Björn H (1983) Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed Dent J 7: 227–238.PubMedGoogle Scholar
  10. 10.
    Jensen B, Bratthall D (1989) A new method for estimation of mutans streptococci in human saliva. J Dent Res 68: 468–471.CrossRefGoogle Scholar
  11. 11.
    Lee DBN, Brautbar N, Kleeman CR (1981) Disorders of phosphorus metabolism. In: Bronner F, Coburn JW (eds) Disorders of mineral metabolism. Pathophysiology of calcium, phosphorus, and magnesium, vol. III. Academic Press, New York, pp 283–421.Google Scholar
  12. 12.
    Massry SG, Coburn JW (1973) The hormonal and nonhormonal control of renal excretion of calcium and magnesium. Nephron 10: 66–112.CrossRefGoogle Scholar
  13. 13.
    Möller IJ, Poulson S (1973) A standardized system for diagnosing, recording and analyzing dental caries data. Scand J Dent Res 81: 1–11.PubMedGoogle Scholar
  14. 14.
    Newbrun E (1989) Cariology, 3rd edn. Quintessence.Google Scholar
  15. 15.
    Saxer UP, Mühlemann HR (1975) Motivation and Aufklärung. Schweiz Monatsschr Zahnheilkd 85: 905–919.Google Scholar
  16. 16.
    Silverstone LM (1984) The significance of remineralization in caries prevention. Can Dent Assoc J 50: 157–167.Google Scholar
  17. 17.
    Suhonen J (1992) Mutans streptococci and their specific oral target. New implications to prevent dental caries? Schweiz Monatsschr Zahnmed 102: 286–291.PubMedGoogle Scholar
  18. 18.
    Turesky S, Gilmore N, Glickman I (1970) Reduced plaque formation by the chloromethyl analogue of vitamin C. J Periodontol 41: 41–43.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • I. Moschèn
    • 1
  • W. Schobersberger
    • 2
  • L. Klotz
    • 2
  • E. Jarosch
    • 1
  • M. Richter
    • 1
  • F. Lang
    • 2
  1. 1.Universitätsklinik für Zahn-, Mund- and Kieferheilkunde, Universität InnsbruckAustria
  2. 2.Institut für Physiologie der Universität InnsbruckAustria

Personalised recommendations