Advertisement

Hydrobiologia

, Volume 118, Issue 2, pp 177–185 | Cite as

Effects of phosphorus and nitrogen enrichment on the phytoplankton in a tropical reservoir (Lobo Reservoir, Brazil)

  • R. Henry
  • J. G. Tundisi
  • P. R. Curi
Article

Abstract

The effects of enrichment with phosphate (0–500 µg. 1−1) and forms of nitrogen (nitrate, nitrite, ammonia an and urea) (0–3500 µgg. −1) on the phytoplankton growth of Lobo Reservoir (Brazil) were studied in July, 1979. Suspended matter, chlorophyll a, cell concentrations and the carotenoid:cchlorophyll ratio were estimated following 14 days of ‘in situ’ incubation. Phosphate alone caused no significant effects, but enrichment with nitrogen caused a substantial increase on the growth of phytoplankton. Comparison between the different forms of nitrogen showed insignificant effects after their additions with 350 µg. −1 and in combination with phosphate. However, when nitrogen was added in large quantities (3 500 µg. −1), significant differences between the nitrogeneous forms were found, with urea causing the strongest effect. In July, nitrogen is mhe main limiting nutrient to phytoplankton growth of Lobo Reservoir.

Keywords

enrichment phosphorus nitrogen phytoplankton tropical reservoir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter,E. J., C. C. Remsen & S. W. Watson, 1972. Utilization of urea by some marine phytoplankton. Limnol. Oceanogr. 17: 265–269.CrossRefGoogle Scholar
  2. Clasen, J. & H. Bernhardt, 1974. The use of algal assays for determining the effect of iron and phosphorus compounds on the growth of various algal species. Wat. Res. 8: 31–44.CrossRefGoogle Scholar
  3. Cochran, W. G. & G. M. Cox, 1957. Experimental designs. John Wiley, London.Google Scholar
  4. de Haan, H., J. B. W. Wanders & J. R. Moed, 1982. Multiple addition bioassay of Tjeukemeer water. Hydrobiologia 88: 233–244.CrossRefGoogle Scholar
  5. Evans, J. H., 1961. Growth of Lake Victoria phytoplankton in enriched cultures. Nature 189: 417.CrossRefGoogle Scholar
  6. Golterman, H. L., 1975. Physiological Limnology. Elsevier, Amsterdam.Google Scholar
  7. Golterman, H. L. & R. S. Clymo, 1969. Methods for chemical analysis of freshwaters. Blackwell, Oxford.Google Scholar
  8. Goodland, R. & M. G. Ferri, 1979. Ecologia do Cerrado. Itatiaia & Edusp. São Paulo.Google Scholar
  9. Hallegraefff, G. M., 1976. Pigment diversity in freshwater phytoplankton. I. A comparison of spectrophotometric and paper chromatographic methods. Int. Revue Ges. Hydrobiol. 61: 149–168.CrossRefGoogle Scholar
  10. Hallegraeff, G. M., 1977. A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. Hydrobiologia 55: 145–165.CrossRefGoogle Scholar
  11. Halman, M. & A. Elgavish, 1975. The role of phosphate in eutrophication. Stimulation of plankton growth and residence times of inorganic phosphate in Lake Kinneret water. Ver. int. Ver. Limnol. 19: 1351–1356.Google Scholar
  12. Henry, R., 1981. Efeitos da eutroficação artificial por nutrientes inorgânicos na comunidade fitoplanctônica na Represa do Lobo (Brotas-Itirapina, SP) e no Lago D. Helvécio (Parque Florestal do Rio Doce, M. G.). Ph. D. Thesis, Univ. Fed. S. Carlos.Google Scholar
  13. Henry, H. & J. G. Tundisi, 1982a. Efeitos de enriquecimento artificial por nitrato e fosfato no crescimento da comunidade fitoplanctônica da Represa do Lobo (‘Broa’, Brotas-Itirapina, SP). Ciência e Cultura 34: 518–524.Google Scholar
  14. Henry, R. & Tundisi, J. G., 1982b. Evidence of limitation by molybdenum and nitrogen on the growth of the phytoplankton community of the Lobo Reservoir (São Paulo, Brazil). Rev. Hydrobiol. trop. 15: 201–208.Google Scholar
  15. Henry, R. & J. G. Tundisi, 1983. Responses of the phytoplankton community of a tropical reservoir (São Paulo, Brazil) to the enrichment with nitrate, phosphate and EDTA. Int. Revueges. Hydrobiol. 68: 853–862.CrossRefGoogle Scholar
  16. Jordan, R. A. & M. E. Bender, 1973. Stimulation of phytoplankton growth by mixtures of phosphate, nitrate and organic chelators. Wat. Res. 7: 189–195.CrossRefGoogle Scholar
  17. Le Cohu, R. & Y. Gueune, 1976. Influence de différentes formes d'azote sur la croissance de Staurastrum polymorphum Bréb. (Desmidiacées, Zygnématales). C. R. Acad. Sci. Paris 283: 1165–1168.Google Scholar
  18. Lima, C. W., J. G. Tundisi & M. de A. Marins, 1979. A systemic approach to the sensitivity of Melosira italica (Ehr) Kutz. Rev. Brasil. Biol. 39: 559–563.Google Scholar
  19. Margalef, R., 1964. Correspondence between the classic types of lakes and the structural dyd dynamic properties of their populations. Verh. int. Ver. Limnol. 15: 169–175.Google Scholar
  20. Marins, M. de A., 1981. El viento como factor ambiental importante en el estudio ecológio del fitoplancton de agua dulce. Rev. Biol. Trop. 29: 197–207.Google Scholar
  21. Maslin, P. E. & G. L. Boles, 1978. Use of a multiple addition bioassay to determine limiting nutrients in Eagle Lake, California. Hydrobiologia 58: 261–269.CrossRefGoogle Scholar
  22. McCarthy, J. J., 1972. The uptake of urea by marine phytoplankton. J. Phycol. 8: 216–222.Google Scholar
  23. McDiffet, W. F., 1980. Limnological characteristics of several lakes on the Lake Wales Ridge, South Central Florida. Hydrobiologia 71: 137–145.CrossRefGoogle Scholar
  24. Moraes, E. de M., 1978. Ciclo sazonal, distribuições horizontal e vertical e interrelações ecológicas de nutrientes na Represa do Lobo (Brotas-Itirapina-SP). Master Thesis, Univ. S. Paulo.Google Scholar
  25. Morris, I., 1974. Nitrogen assimilation and protein synthesis. p. 583–609, In: W. D. P. Stewart (Ed.). Algal physiology and biochemistry. Blackwell, Oxford.Google Scholar
  26. Morrison,D. F., 1967. Multivariate statistical methods. McGraw Hill, New York.Google Scholar
  27. Moss, B., 1969. Limitation of algal growth in some Central African waters. limnol. Oceanogr. 14: 591–601.CrossRefGoogle Scholar
  28. Robarts, R. D. & G. S. Southall, 1977. Nutrient limitation of phytoplankton growth in seven tropical man-made lakes, with special reference to Lake McIlwaine, Rhodesia. Arch. Hydrobiol. 79: 1–35.Google Scholar
  29. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiences of nitrogen and carbon in eutrophied lakes. Science 195: 260–262.CrossRefGoogle Scholar
  30. Schindler, D. W., E. J. Fee & T. Ruszcznski, 1978. Phosphorus input and its consequences for phytoplankton standing crop and production in the experimental lakes area and in similar lakes. J. Fish. Res. Board Can. 35: 190–196.CrossRefGoogle Scholar
  31. Smayda, T. J., 1971. Further enrichment experiments using the marine centric diatom Cyclotella nana (clone 13–1) as an assay organism. In: Costlow Jr., J. D. org. Fertility of the sea. Jordan & Breach Science, New York, p. 439–511.Google Scholar
  32. Syrett, P. J., 1962. Nitrogen assimilation. p..171–188. In: R. A. Lewin (Ed.), Physiology and biochemistry of algae. Academic Press, New York.Google Scholar
  33. Talling, J. F., 1966. The annual cycle of stratification and phytoplankton growth in lake Victoria (East Africa). Int. Revueges Hydrobiol. 51: 545–621.CrossRefGoogle Scholar
  34. Teixeira, C. & M. B. Kutner, 1962. Plankton studies in a mangrove environment. I. First assessment of standing stock and ecological factors. Bol. Inst. Oceanogr., S. Paulo, 12: pp. 101–124.CrossRefGoogle Scholar
  35. Toerien, D. F. & D. J. Steyn, 1975. The eutrophication levels of four South African impoundments. Verh. int. Ver. Limnol. 19: 1947–1956.Google Scholar
  36. Tundisi, J. G. & K. Hino, 1981. List of species and growth seasons of phytoplankton from Lobo (Broa) Reservoir. Rev. Brasil. Biol. 41: 63–68.Google Scholar
  37. Tundisi, J. G., J. G. Gentil & M. C. Dirickson, 1978. Seasonal cycle of primary production of nanno and microphytoplankton in a shallow tropical reservoir. Revta. brasil. Bot. 1: 35–39.Google Scholar
  38. Tundisi, J. G., T. M. Tundisi, G. Strixino, M. de A. Marins, E. M. Mattos & E. P. Santos, 1972a. Estudos ecológicos na Represa do Broa I. (Progress Report) DCB.Google Scholar
  39. Tundisi, J. G., T. M. Tundisi, G. Stixino, M. de A. Marins, E. M. Mattos & E. P. Santos, 1972a. Estudos ecológicos na Represa do Broa II. (Progress Report) DCB.Google Scholar
  40. Tundisi, J. G., T. M. Tundisi, O. Rocha, J. G. Gentil & N. Nakamoto, 1977. Primary production, standing-stock of phytoplnnkton and ecological factors in a shallow tropical reservoir (Represa do Broa, São Carlos, Brasil). Sem. Medio Ambiente y Represas 1: 138–172.Google Scholar
  41. Vieira, A. A. H. & J. G. Tundisi, 1979. Notas sobre o cultivo de algumas espécies de algas de água doce. Rev. bras. Biol. 39: 703–706.Google Scholar
  42. Vince, S. & I. Valiela, 1973. The effects of ammonium and phosphate enrichments on chlorophyll a, pigment ratio and species composition of phytoplankton of Vineyard Sound. Mar. Biol. 19: 69–73.CrossRefGoogle Scholar
  43. Welch, E. B., P. Sturtevant & M. S. Perkins, M. S., 1978. Dominance of phosphorus over the nitrogen as the limiter to phytoplankton growth rate. Hydrobiologia 57: 209–215.CrossRefGoogle Scholar

Copyright information

© Dr.W. Junk Publishers 1984

Authors and Affiliations

  • R. Henry
    • 1
  • J. G. Tundisi
    • 3
  • P. R. Curi
    • 2
  1. 1.Department of ZoologyInstituto Básico de Biologia Médica e Agricola, Universidade Estadual Paulista, Campus de BotucatuSPBrazil
  2. 2.Department of Biostatistics, Instituto Básico de Biologia Médica e AgricolaUniversidade Estadual Paulista, Campus de BotucatuSPBrazil
  3. 3.Laboratory of Limnology, Department of Biological SciencesUniversidade Federal de São CarlosSão Carlos, SPBrazil

Personalised recommendations