, Volume 54, Issue 3, pp 215–217 | Cite as

The changing role of terrestrial and autochthonous organic matter in newly flooded lakes

  • A. J. McLachlan


Examination of the gut contents of mud-dwelling animals in three newly flooded lakes shows terrestrial organic matter to be a major component, particularly during filling of the lake basin. After filling is complete, a fall-off in total biomass of fauna is usually accompanied by significant reduction in the proportion of terrestrial detritus in favour of algal food. It is concluded that newly formed lakes pass through two phases. During flooding they are dependent on the terrestrial ecosystem. This is followed by a switch, immediately after filling, to more self-sustained autochthonous-based food chains.


New Lakes organic matter changing role 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronikova, I. M., Drabcova, W. G., Kuzemenko, K. M., Michalova, N. F. & Stravinskaja, E. A. 1970. Biological productivity of the main communities of the red lake. p. 1–12. In: Productivity Problems of Freshwaters. Preliminary papers. IBP-UNESCO Symposium Kazimierz May 1970. 1Google Scholar
  2. Boyd, C. M. 1976. Selection of particle sizes by filter-feeding copepods. A plea for reason. Limnol. Oceanogr. 21: 175–180.CrossRefGoogle Scholar
  3. Coffman, W. P., Cummins, K. W. & Wuycheck, J. C. 1971. Energy flow in a woodland ecosystem: 1. Tissue support trophic structure of the autumnal community. Arch. Hydrobiol. 68: 232–276.Google Scholar
  4. Cummins, K. W., Miller, L. D., Smith, N. A. & Fox, R. M. 1965. Experimental Entomology. Rhineland, London.Google Scholar
  5. Egglishaw, H. J. 1964. The distributional relationship between bottom fauna and plant detritus in streams. J. Anim. Ecol. 33: 463–476.CrossRefGoogle Scholar
  6. Fittkau, E. J. & Klinge, H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5: 2–14.CrossRefGoogle Scholar
  7. Gak, G. Z., Gurivch, V. V., Koreljakova, I. L., Kostikova, L. E., Konstantinova, N. A., Olivary, G. A., Prijmachenko, A. D., Tseeb, Y. Y., Vtadirirova, K. S. & Zimbalevskaya, J. M. 1970. Productivity of Aquatic Organisms. Communications of different trophic levels in Kiev Reservoir. p. 83–94. In: Productivity Problems of Freshwaters. Preliminary Papers. IBP-UNESCO symposium Kazimierz May 1970. 1.Google Scholar
  8. Hynes, H. B. N. & Kaushik, N. K. 1969. The relationship between dissolved nutrient salts and protein production in submerged autumnal leaves. Verh. Internat. Verein. Limnol. 17: 95–103.Google Scholar
  9. Jonasson, P. M. & Kristinsen, J. 1967. Primary and Secondary production in Lake Esrom. Growth of Chironomus anthracinus in relation to seasonal cycles of phytoplankton and dissolved oxygen. Int. Rev. ges Hydrobiol. 52: 163–217.CrossRefGoogle Scholar
  10. Mann, K. H. 1969. The dynamics of aquatic ecosystems. In: Advances in Ecology Research 6. (Ed. J. B. Cragg). pp. 1–81. Academic Press. New York.Google Scholar
  11. McLachlan, A. J. 1969. The effect of aquatic macrophytes on the variety and abundance of benthic fauna in a newly created lake in the tropics (Lake Kariba). Arch. Hydrobiol. 66: 212–231.Google Scholar
  12. McLachlan, A. J. 1970. Some effects of annual fluctuations in water level on the larval chironomid communities of Lake Kariba. J. Anim. Ecol. 39: 79–90.CrossRefGoogle Scholar
  13. McLachlan, A. J. 1974a. Development of some lake ecosystems in tropical Africa, with special reference to the invertebrates. Biol. Rev. 49: 365–397.CrossRefGoogle Scholar
  14. McLachlan, A. J. 1974b. The development of chironomid communities in a new temperate impoundment. Ent. Tidskr. 95 (Suppl.): 162–171.Google Scholar
  15. McLachlan, A. J. 1974c. Recovery of the mud substrate and its associated fauna following a dry phase in a tropical lake. Limnol. Oceanogr. 19: 74–83.CrossRefGoogle Scholar
  16. McLachlan, A. J. 1975. The role of aquatic macrophytes in the recovery of the benthic fauna of a tropical lake after a dry phase. Limnol. Oceanogr. 20: 54–63.CrossRefGoogle Scholar
  17. McLachlan, A. J. 1977. Some effects of tube shape on the feeding of Chironomus plumosus L. (Diptera: Chironomidae). J. Anim. Ecol. 46: 139–146.CrossRefGoogle Scholar
  18. Morduchai-Boltovskoi, F. B. 1961. Die Entwicklung der Bodenfauna in den Stauseen der Wolga. Verh. Internat. Verein. Limnol. 14: 647–651.Google Scholar
  19. Moss, B. 1968. Studies on the degradation of chlorophyll ‘a’ and carotenoids in fresh waters. New Phytol. 67: 49–59.CrossRefGoogle Scholar
  20. Pechlaner, R., Bretschko, G., Gollman, H., Tilzer, M. & Weissenbach, H. P. 1972. Ein Hochgebirgssee (Vorderer Finstertaler See, Kuhtai, Tirol) als Modell des Energientransportes durch ein Limnisches Ökosystem. Verh. d. Dtsch. Zool. Ges. 4: 47–56.Google Scholar
  21. Vallentyne, J. R. 1960. Fossil pigments. In: Comparative Biochemistry of Photoreactive Systems (Ed. by Allen, M. B.) pp. 83–105. Academic press. New York.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1977

Authors and Affiliations

  • A. J. McLachlan
    • 1
  1. 1.Zoology DepartmentUniversity of Newcastle upon TyneEngland

Personalised recommendations