, Volume 144, Issue 1, pp 83–88 | Cite as

Changes in the physical and chemical properties of floodwater and sediment in an experimental ricefield (Reggio Emilia, Italy)

  • R. Antonietti
  • P. Viaroli
  • F. Antonietti


Changes in time and space in the physical and chemical variables connected to the oxygen P/R ratio were studied.

Temperature, light transmission, dissolved oxygen and its day-night cycles were measured periodically in the floodwater; in addition, concentrations of total phosphorus, proteins and chlorophyll-a in the particulate suspended matter were measured. Finally, the seasonal evolution of the redox conditions in the water and in the sediment were analysed.

Highly significant correlations between pH and D.O. in the water, and oxygen production were found; the pH and Eh values of the water/sediment interface were strictly related to the corresponding values reached in the water. The composition and the size of the particulate suspended matter pool seemed to be relatively stable and unrelated to the physical and chemical characteristics of the water.


ricefield POM proteins chlorophyll-a phosphorus redox potential pH P/R ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonietti, R., M. Copelli & P. Viaroli, 1981. Relazione fra proteine e solidi volatili in ambienti acquatici. Acqua e Aria 6: 609–611.Google Scholar
  2. Bertoni, R. & C. Callieri, 1982. Yearly variations of parameters involved in organic carbon cycle in pelagic and littoral zone of Lago Maggiore. Mem. Ist. ital. Idrobiol., 40: 181–199.Google Scholar
  3. C.N.R.S., 1978. Recherches ècologique sur les rizieres de Camargue. Centre d'Ecologie de Camargue, Le Sambuc, pp. 334.Google Scholar
  4. Ferrari, L., A. De Marchi, P. Menozzi, F. Minzoni & F. Piccoli, 1985. Heleoplankton seasonal succession in an experimental ricefield in Northern Italy. Verh. Int. Ver. Limnol., 22: 1711–1716.Google Scholar
  5. Gore, J. A., 1984. Potential errors in P/R measurements by the methods of Pvletic, Matonickin, Stilinovic and Habdija. Hydrobiologia 118: 213–214.CrossRefGoogle Scholar
  6. Hargrave, B. T., 1972. Oxidation-reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in an eutrophic lake. Oikos, 23: 167–177.CrossRefGoogle Scholar
  7. Lowry, O. H., N. T. Resebrought, A. L. Farr & R. Y. Randall, 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem., 193: 265–275.Google Scholar
  8. Melchiorri-Santolini, U. & J. W. Hopton, 1972. Detritus and its role in aquatic ecosystems. Mem. Ist. ital. Idrobiol., Suppl. 29, pp. 540.Google Scholar
  9. Menzel, D. W. & N. Corvin, 1965. The measurement of total phosphorus in sea water based on the liberation of organically bound fractions by persulphate oxidation. Limnol. Oceanogr. 10: 280–282.CrossRefGoogle Scholar
  10. Moroni, A., 1961. L'ecosistema di risaia. Ente Nazionale Risi, Roma, pp. 53.Google Scholar
  11. Moroni A., 1967. Ecologia delle comunità eleoplanctoniche di risaia. Studium Parmense, Parma, pp. 105.Google Scholar
  12. Owens, M., 1965. Some factors involved in the use of dissolved oxygen distributions in streams to determine productivity. Mem. Ist. ital. Idrobiol. Suppl. 18: 209–224.Google Scholar
  13. Podlejski, J., D. Pront & A. Vaquer, 1978. Charactèristiques phisiques et chimiques de l'eau des rizieres de Camargue. In: Recherches ecologiques sur les rizieres de Camargue. (C.N.R.S.), Centre d'Ecologie de Camargue, Le Sambuc: 66–82.Google Scholar
  14. Ponnamperuma, F. N., 1972. The chemistry of submerged soils. Adv. Agron. 24: 29–96.CrossRefGoogle Scholar
  15. Rossi, O., A. Moroni, P. Baroni & U. Caravello, 1974. Annual evolution of the zooplankton diversity in twelve italian ricefields. Boll. Zool. 41: 157–181.CrossRefGoogle Scholar
  16. Vollenweider, R. A., 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publications, Oxford, pp. 213.Google Scholar
  17. Wangersky, P. J., 1977. The role of particulate organic matter in the productivity of surface waters. Helgolander wiss. Meeresunters 30: 546–564.CrossRefGoogle Scholar
  18. Weber, C. I. & B. M. McFarland, 1969. Periphyton biomass-chlorophyll ratio as index of water quality. 17th Ann. Meeting of the Midwest Bentholog. Soc., Gilbertsville, Kentucky, pp.Google Scholar
  19. Yoshida, T., 1975. Microbial metabolism of flooded soils. Soil Biochemistry, 3: 83–122.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • R. Antonietti
    • 2
  • P. Viaroli
    • 1
  • F. Antonietti
    • 1
  1. 1.Istituto di EcologiaUniversità di ParmaItaly
  2. 2.Istituto di EcologiaUniversità di ParmaParmaItaly

Personalised recommendations