Skip to main content
Log in

The Plasminogen Activation System Promotes Dendritic Spine Recovery and Improvement in Neurological Function After an Ischemic Stroke

  • SI: Present and future of neuroplasticity in CNS recovery
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Advances in neurocritical care and interventional neuroradiology have led to a significant decrease in acute ischemic stroke (AIS) mortality. In contrast, due to the lack of an effective therapeutic strategy to promote neuronal recovery among AIS survivors, cerebral ischemia is still a leading cause of disability in the world. Ischemic stroke has a harmful impact on synaptic structure and function, and plasticity-mediated synaptic recovery is associated with neurological improvement following an AIS. Dendritic spines (DSs) are specialized dendritic protrusions that receive most of the excitatory input in the brain. The deleterious effect of cerebral ischemia on DSs morphology and function has been associated with impaired synaptic transmission and neurological deterioration. However, these changes are reversible if cerebral blood flow is restored on time, and this recovery has been associated with neurological improvement following an AIS. Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two serine proteases that, besides catalyzing the conversion of plasminogen into plasmin in the intravascular and pericellular environment, respectively, are also efficient inductors of synaptic plasticity. Accordingly, recent evidence indicates that both, tPA and uPA, protect DSs from the metabolic stress associated with the ischemic injury, and promote their morphological and functional recovery during the recovery phase from an AIS. Here, we will review data indicating that plasticity-induced changes in DSs and the associated post-synaptic density play a pivotal role in the recovery process from AIS, making special emphasis on the role of tPA and uPA in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  2. Saver JL. Time is brain—quantified. Stroke. 2006;37(1):263–6.

    Article  PubMed  Google Scholar 

  3. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72. doi:10.1038/nrn2735.

    Article  CAS  PubMed  Google Scholar 

  4. Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 1993;361(6411):453–7.

    Article  CAS  PubMed  Google Scholar 

  5. Whishaw IQ. Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology. 2000;39(5):788–805.

    Article  CAS  PubMed  Google Scholar 

  6. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 2003;26(7):360–8. doi:10.1016/S0166-2236(03)00162-0.

    Article  CAS  PubMed  Google Scholar 

  7. Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci. 2001;2(12):880–8. doi:10.1038/35104061.

    Article  CAS  PubMed  Google Scholar 

  8. Fiala JC, Feinberg M, Popov V, Harris KM. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci: Off J Soc Neurosci. 1998;18(21):8900–11.

    CAS  Google Scholar 

  9. Ziv NE, Smith SJ. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron. 1996;17(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  10. Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC. Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat. 2014;8:142. doi:10.3389/fnana.2014.00142.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bourne JN, Harris KM. Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci. 2008;31:47–67. doi:10.1146/annurev.neuro.31.060407.125646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420(6917):812–6. doi:10.1038/nature01276.

    Article  CAS  PubMed  Google Scholar 

  13. Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron. 2005;45(2):279–91. doi:10.1016/j.neuron.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  14. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788–94. doi:10.1038/nature01273.

    Article  CAS  PubMed  Google Scholar 

  15. Fischer M, Kaech S, Knutti D, Matus A. Rapid actin-based plasticity in dendritic spines. Neuron. 1998;20(5):847–54.

    Article  CAS  PubMed  Google Scholar 

  16. Mizrahi A, Crowley JC, Shtoyerman E, Katz LC. High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci: Off J Soc Neurosci. 2004;24(13):3147–51. doi:10.1523/jneurosci.5218-03.2004.

    Article  CAS  Google Scholar 

  17. Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature. 2006;441(7096):979–83. doi:10.1038/nature04783.

    Article  CAS  PubMed  Google Scholar 

  18. Tailby C, Wright LL, Metha AB, Calford MB. Activity-dependent maintenance and growth of dendrites in adult cortex. Proc Natl Acad Sci U S A. 2005;102(12):4631–6. doi:10.1073/pnas.0402747102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hasbani MJ, Schlief ML, Fisher DA, Goldberg MP. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J Neurosci: Off J Soc Neurosci. 2001;21(7):2393–403.

    CAS  Google Scholar 

  20. Kandel E. Principles of Neural Science, Fifth Edition. McGraw-Hill Education; 2013.

  21. Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189(4):619–29. doi:10.1083/jcb.201003008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonhoeffer T, Yuste R. Spine motility. Phenomenology, mechanisms, and function. Neuron. 2002;35(6):1019–27.

    Article  CAS  PubMed  Google Scholar 

  23. Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci. 2000;3(7):653–9. doi:10.1038/76609.

    Article  CAS  PubMed  Google Scholar 

  24. Yuste R, Majewska A. On the function of dendritic spines. Neuroscientist: Rev J Bringing Neurobiol, Neurol Psychiatry. 2001;7(5):387–95.

    Article  CAS  Google Scholar 

  25. Yuste R. Electrical compartmentalization in dendritic spines. Annu Rev Neurosci. 2013;36:429–49. doi:10.1146/annurev-neuro-062111-150455.

    Article  CAS  PubMed  Google Scholar 

  26. Pittman RN, Ivins JK, Buettner HM. Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci: Off J Soc Neurosci. 1989;9(12):4269–86.

    CAS  Google Scholar 

  27. Wu F, Catano M, Echeverry R, Torre E, Haile WB, An J, et al. Urokinase-type plasminogen activator promotes dendritic spine recovery and improves neurological outcome following ischemic stroke. J Neurosci: Off J Soc Neurosci. 2014;34(43):14219–32. doi:10.1523/JNEUROSCI.5309-13.2014.

    Article  CAS  Google Scholar 

  28. Wu F, Torre E, Cuellar-Giraldo D, Cheng L, Yi H, Bichler EK, et al. Tissue-type plasminogen activator triggers the synaptic vesicle cycle in cerebral cortical neurons. J Cereb Blood Flow Metab. 2015;35(12):1966–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Echeverry R, Wu J, Haile WB, Guzman J, Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J ClinInvest. 2010;120(6):2194–205.

    CAS  Google Scholar 

  30. Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the central nervous system. Front Cell Neurosci. 2015;9:304. doi:10.3389/fncel.2015.00304.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xin H, Li Y, Shen LH, Liu X, Hozeska-Solgot A, Zhang RL, et al. Multipotent mesenchymal stromal cells increase tPA expression and concomitantly decrease PAI-1 expression in astrocytes through the sonic hedgehog signaling pathway after stroke (in vitro study). Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31(11):2181–8. doi:10.1038/jcbfm.2011.116.

    Article  CAS  Google Scholar 

  32. Casse F, Bardou I, Danglot L, Briens A, Montagne A, Parcq J, et al. Glutamate controls tPA recycling by astrocytes, which in turn influences glutamatergic signals. J Neurosci: Off J Soc Neurosci. 2012;32(15):5186–99. doi:10.1523/JNEUROSCI.5296-11.2012.

    Article  CAS  Google Scholar 

  33. Yang F, Liu S, Wang SJ, Yu C, Paganini-Hill A, Fisher MJ. Tissue plasminogen activator expression and barrier properties of human brain microvascular endothelial cells. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol. 2011;28(4):631–8. doi:10.1159/000335785.

    Article  Google Scholar 

  34. Lochner JE, Honigman LS, Grant WF, Gessford SK, Hansen AB, Silverman MA, et al. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol. 2006;66(6):564–77.

    Article  CAS  PubMed  Google Scholar 

  35. Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron. 2004;44(6):1021–30.

    Article  CAS  PubMed  Google Scholar 

  36. Mataga N, Nagai N, Hensch TK. Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci USA. 2002;99(11):7717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez CL, Kolb B. A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci. 2003;18(7):1950–62.

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Murphy TH. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. J Neurosci: Off J Soc Neurosci. 2008;28(46):11970–9. doi:10.1523/JNEUROSCI.3724-08.2008.

    Article  CAS  Google Scholar 

  39. Zhang S, Boyd J, Delaney K, Murphy TH. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci: Off J Soc Neurosci. 2005;25(22):5333–8. doi:10.1523/jneurosci.1085-05.2005.

    Article  CAS  Google Scholar 

  40. Murphy TH, Li P, Betts K, Liu R. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci: Off J Soc Neurosci. 2008;28(7):1756–72. doi:10.1523/JNEUROSCI.5128-07.2008.

    Article  CAS  Google Scholar 

  41. Hasbani MJ, Schlief ML, Fisher DA, Goldberg MP. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J Neurosci. 2001;21(7):2393–403.

    CAS  PubMed  Google Scholar 

  42. Park JS, Bateman MC, Goldberg MP. Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis. 1996;3(3):215–27.

    Article  CAS  PubMed  Google Scholar 

  43. Brown CE, Wong C, Murphy TH. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke. 2008;39(4):1286–91.

    Article  PubMed  Google Scholar 

  44. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci. 2001;24:1071–89. doi:10.1146/annurev.neuro.24.1.1071.

    Article  CAS  PubMed  Google Scholar 

  45. Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain. 2005;128(Pt 5):1122–38. doi:10.1093/brain/awh456.

    Article  PubMed  Google Scholar 

  46. Castro-Alamancos MA, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience. 1995;68(3):793–805.

    Article  CAS  PubMed  Google Scholar 

  47. Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, Reese TS. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A. 2001;98(18):10428–32. doi:10.1073/pnas.181336998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci: Off J Soc Neurosci. 1998;18(2):625–33.

    CAS  Google Scholar 

  49. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999;402(6760):421–5. doi:10.1038/46574.

    Article  CAS  PubMed  Google Scholar 

  50. Luscher C, Nicoll RA, Malenka RC, Muller D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci. 2000;3(6):545–50. doi:10.1038/75714.

    Article  CAS  PubMed  Google Scholar 

  51. Wu F, Nicholson AD, Haile WB, Torre E, An J, Chen C, et al. Tissue-type plasminogen activator mediates neuronal detection and adaptation to metabolic stress. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2013;33(11):1761–9. doi:10.1038/jcbfm.2013.124.

    Article  CAS  Google Scholar 

  52. Wu F, Wu J, Nicholson AD, Echeverry R, Haile WB, Catano M, et al. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci: Off J Soc Neurosci. 2012;32(29):9848–58. doi:10.1523/JNEUROSCI.1241-12.2012.

    Article  CAS  Google Scholar 

  53. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood. 2000;96(2):569–76.

    CAS  PubMed  Google Scholar 

  54. Yepes M, Roussel BD, Ali C, Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  55. An J, Haile WB, Wu F, Torre E, Yepes M. Tissue-type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience. 2014;257:41–8. doi:10.1016/j.neuroscience.2013.10.060.

    Article  CAS  PubMed  Google Scholar 

  56. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  CAS  PubMed  Google Scholar 

  57. Shi GD, OuYang YP, Shi JG, Liu Y, Yuan W, Jia LS. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun. 2011;404(4):941–5.

    Article  CAS  PubMed  Google Scholar 

  58. Magagnin MG, van den Beucken T, Sergeant K, Lambin P, Koritzinsky M, Devreese B, et al. The mTOR target 4E-BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency. Proteomics. 2008;8(5):1019–28.

    Article  CAS  PubMed  Google Scholar 

  59. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.

    Article  CAS  PubMed  Google Scholar 

  60. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol. 2000;48(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  61. Bruick RK. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 2003;17(21):2614–23.

    Article  CAS  PubMed  Google Scholar 

  62. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002;64(5–6):993–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85. doi:10.1038/nrm2249.

    Article  CAS  PubMed  Google Scholar 

  64. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36. doi:10.1038/nrm2821.

    Article  CAS  PubMed  Google Scholar 

  65. Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, et al. The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost. 2005;93(2):205–11. doi:10.1267/THRO05020205.

    CAS  PubMed  Google Scholar 

  66. Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Brain Res Rev. 2001;36(2–3):169–74.

    Article  CAS  PubMed  Google Scholar 

  67. Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imaging. Prog Neurobiol. 2002;66(2):109–22.

    Article  PubMed  Google Scholar 

  68. Nudo RJ. Postinfarct cortical plasticity and behavioral recovery. Stroke; A j Cereb Circ. 2007;38(2 Suppl):840–5. doi:10.1161/01.STR.0000247943.12887.d2.

    Article  Google Scholar 

  69. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711. doi:10.1146/annurev.neuro.23.1.649.

    Article  CAS  PubMed  Google Scholar 

  70. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2008;33(1):18–41. doi:10.1038/sj.npp.1301559.

    Article  Google Scholar 

  71. Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10(3):358–64.

    Article  CAS  PubMed  Google Scholar 

  72. Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 1983;305(5936):719–21.

    Article  CAS  PubMed  Google Scholar 

  73. Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 2012;13(3):169–82. doi:10.1038/nrn3192.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci U S A. 2007;104(15):6418–23. doi:10.1073/pnas.0701656104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Filippo M, Tozzi A, Costa C, Belcastro V, Tantucci M, Picconi B, et al. Plasticity and repair in the post-ischemic brain. Neuropharmacology. 2008;55(3):353–62. doi:10.1016/j.neuropharm.2008.01.012.

    Article  PubMed  Google Scholar 

  76. Calabresi P, Centonze D, Pisani A, Cupini L, Bernardi G. Synaptic plasticity in the ischaemic brain. Lancet Neurol. 2003;2(10):622–9.

    Article  CAS  PubMed  Google Scholar 

  77. Jourdain P, Nikonenko I, Alberi S, Muller D. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J Neurosci. 2002;22(8):3108–16.

    CAS  PubMed  Google Scholar 

  78. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron. 1998;21(5):1151–62.

    Article  CAS  PubMed  Google Scholar 

  79. Shen K, Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999;284(5411):162–6.

    Article  CAS  PubMed  Google Scholar 

  80. Hsu KS, Huang CC. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus. Br J Pharmacol. 1997;122(4):671–81. doi:10.1038/sj.bjp.0701409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M, et al. Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1996;16(5):906–14. doi:10.1097/00004647-199609000-00014.

    Article  CAS  Google Scholar 

  82. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2(8):493–502.

    Article  PubMed  Google Scholar 

  83. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspect Biol. 2012;4(1):a005736. doi:10.1101/cshperspect.a005736.

    Article  Google Scholar 

  84. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135(3):422–35. doi:10.1016/j.cell.2008.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wierenga CJ, Walsh MF, Turrigiano GG. Temporal regulation of the expression locus of homeostatic plasticity. J Neurophysiol. 2006;96(4):2127–33. doi:10.1152/jn.00107.2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the National Institutes of Health Grants NS-079331 (to MY) and NS-091201 (to MY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yepes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanneret, V., Yepes, M. The Plasminogen Activation System Promotes Dendritic Spine Recovery and Improvement in Neurological Function After an Ischemic Stroke. Transl. Stroke Res. 8, 47–56 (2017). https://doi.org/10.1007/s12975-016-0454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0454-x

Keywords

Navigation