Skip to main content

Advertisement

Log in

HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Cadherin switch, as a key hallmark of epithelial–mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer.

Methods

The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining.

Results

Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay.

Conclusions

Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhai Y, Hotary KB, Nan B et al (2005) Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res 65:6543–6550

    Article  CAS  PubMed  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  CAS  PubMed  Google Scholar 

  3. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  CAS  PubMed  Google Scholar 

  4. Boulenouar S, Weyn C, Van Noppen M et al (2010) Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion, migration and invasion of trophoblastic cells. Carcinogenesis 31:473–480

    Article  CAS  PubMed  Google Scholar 

  5. Spanos WC, Hoover A, Harris GF et al (2008) The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol 82:2493–2500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jing Y, Han Z, Zhang S et al (2011) Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Iwatsuki M, Mimori K, Yokobori T et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101:293–299

    Article  CAS  PubMed  Google Scholar 

  8. Thiery JP, Acloque H, Huang RY et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  9. Lee MY, Chou CY, Tang MJ et al (2008) Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res 14:4743–4750

    Article  CAS  PubMed  Google Scholar 

  10. Hsu YM, Chen YF, Chou CY et al (2007) KCL cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 67:11064–11073

    Article  CAS  PubMed  Google Scholar 

  11. Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727–735

    Article  CAS  PubMed  Google Scholar 

  12. Ye J, Cheng X, Chen X et al (2010) Prevalence and risk profile of cervical Human papillomavirus infection in Zhejiang Province, southeast China: a population-based study. Virol J 7:66

    Article  PubMed Central  PubMed  Google Scholar 

  13. Li BH, Zhou JS, Ye F et al (2011) Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer 47:2166–2174

    Article  CAS  PubMed  Google Scholar 

  14. Li B, Hu Y, Ye F et al (2010) Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 20:597–604

    Article  PubMed  Google Scholar 

  15. Zhou J, Li B, Peng C et al (2013) Inhibition of cervical cancer cell growth in vitro and in vivo by lentiviral-vector mediated shRNA targeting the common promoter of HPV16 E6 and E7 oncogenes. Antiviral Res 98:305–313

    Article  CAS  PubMed  Google Scholar 

  16. Gu J, Liang Y, Qiao L et al (2013) Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry. Int J Clin Exp Pathol 6:2396–2403

    PubMed Central  PubMed  Google Scholar 

  17. Lilien J, Balsamo J, Arregui C et al (2002) Turn-off, drop-out: functional state switching of cadherins. Dev Dyn 224:18–29

    Article  CAS  PubMed  Google Scholar 

  18. Paredes J, Figueiredo J, Albergaria A et al (2012) Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta 1826:297–311

    CAS  PubMed  Google Scholar 

  19. Bryan RT, Atherfold PA, Yeo Y et al (2008) Cadherin switching dictates the biology of transitional cell carcinoma of the bladder: ex vivo and in vitro studies. J Pathol 215:184–194

    Article  CAS  PubMed  Google Scholar 

  20. Araki K, Shimura T, Suzuki H et al (2011) E/N- cadherin switch mediates cancer progression via TGF-β-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer 105:1885–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cheung PY, Yip YL, Tsao SW et al (2011) Id-1 induces cell invasiveness in immortalized epithelial cells by regulating cadherin switching and Rho GTPases. J Cell Biochem 112:157–168

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Cheng Q, Zhou Y et al (2013) Slug is a key mediator of hypoxia induced cadherin switch in HNSCC: correlations with poor prognosis. Oral Oncol 49:1043–1050

    Article  CAS  PubMed  Google Scholar 

  23. Shah GV, Muralidharan A, Gokulgandhi M et al (2009) Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J Biol Chem 284:1018–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lindley LE, Briegel KJ (2010) Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem Biophys Res Commun 399:659–664

    Article  CAS  PubMed  Google Scholar 

  25. Cheung LW, Leung PC, Wong AS (2010) Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 29:2427–2440

    Article  CAS  PubMed  Google Scholar 

  26. Hao L, Ha JR, Kuzel P et al (2012) Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3 K/PTEN pathway through Twist and Snail. Br J Dermatol 166:1184–1197

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Xiao D, Li G et al (2014) EphA2 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene 33:2737–2747

    Article  CAS  PubMed  Google Scholar 

  28. Watson RA, Thomas M, Banks L et al (2003) Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci 116:4925–4934

    Article  CAS  PubMed  Google Scholar 

  29. Caberg JH, Hubert PM, Begon DY et al (2008) Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 29:1441–1447

    Article  CAS  PubMed  Google Scholar 

  30. Haga T, Uchide N, Tugizov S et al (2008) Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation. Apoptosis 13:97–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank financial support by grants from the National Nature Science Foundation of China (No. 81202066 and No. 81302248).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Li.

Additional information

D. Hu and J. Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Zhou, J., Wang, F. et al. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo. Arch Gynecol Obstet 292, 1345–1354 (2015). https://doi.org/10.1007/s00404-015-3787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3787-x

Keywords

Navigation