Skip to main content

Towards Serious Games for Improved BCI

  • Reference work entry
  • First Online:
Handbook of Digital Games and Entertainment Technologies

Abstract

Brain-computer interface (BCI) technologies, or technologies that use online brain signal processing, have a great promise to improve human interactions with computers, their environment, and even other humans. Despite this promise, there are no current serious BCI technologies in widespread use, due to the lack of robustness in BCI technologies. The key neural aspect of this lack of robustness is human variability, which has two main components: (1) individual differences in neural signals and (2) intraindividual variability over time. In order to develop widespread BCI technologies, it will be necessary to address this lack of robustness. However, it is currently unknown how neural variability affects BCI performance. To accomplish these goals, it is essential to obtain data from large numbers of individuals using BCI technologies over considerable lengths of time. One promising method for this is through the use of BCI technologies embedded into games with a purpose (GWAP). GWAP are a game-based form of crowdsourcing which players choose to play for enjoyment and during which the player performs key tasks which cannot be automated but that are required to solve research questions. By embedding BCI paradigms in GWAP and recording neural and behavioral data, it should be possible to much more clearly understand the differences in neural signals between individuals and across different time scales, enabling the development of novel and increasingly robust adaptive BCI algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • V. Balasubramanian, K. Adalarasu, A. Gupta, EEG based analysis of cognitive fatigue during simulated driving. Int. J. Ind. Syst. Eng. 7(2), 135–149 (2011). doi:10.1504/IJISE.2011.038563

    Google Scholar 

  • M. Billinger, C. Brunner, G.R. Müller-Putz, Single-trial connectivity estimation for classification of motor imagery data. J. Neural Eng. 10(4), 046006 (2013). doi:10.1088/1741-2560/10/4/046006

    Article  Google Scholar 

  • G. Bin, X. Gao, Y. Zheng, B. Hong, S. Gao, An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J. Neural Eng. 6(4), 046002 (2009). doi:10.1088/1741-2560/6/4/046002

    Article  Google Scholar 

  • D.P.-O. Bos, B. Reuderink, B. van de Laar, H. Gürkök, C. Mühl, M. Poel, A. Nijholt, D. Heylen, Brain-computer interfacing and games, in Brain-Computer Interfaces, ed. by D.S. Tan, A. Nijholt. Human-computer interaction series (Springer, London, 2010), pp. 149–178. doi:10.1007/978-1-84996-272-8_10

    Google Scholar 

  • P.J. Brantley, C.D. Waggoner, G.N. Jones, N.B. Rappaport, A daily stress inventory: development, reliability, and validity. J. Behav. Med. 10(1), 61–73 (1987)

    Article  Google Scholar 

  • E. Brown, P. Cairns, A grounded investigation of game immersion, in CHI’04 Extended Abstracts on Human Factors in Computing Systems (CHI EA’04) (ACM, New York, 2004), pp. 1297–1300. doi:10.1145/985921.986048

    Google Scholar 

  • D.J. Buysse, C.F. Reynolds III, T.H. Monk, S.R. Berman, D.J. Kupfer, The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28(2), 193–213 (1989)

    Article  Google Scholar 

  • S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, F. Players, Predicting protein structures with a multiplayer online game. Nature 466(7307), 756–760 (2010). doi:10.1038/nature09304

    Article  Google Scholar 

  • R. Dakan, Review: Emotiv EPOC, tough thoughts on the new mind-reading controller. Joystiq (2010). 27 Jan. http://www.joystiq.com/2010/01/27/review-emotiv-epoc-tough-thoughts-on-the-new-mind-reading-cont/

  • C.D. Geisler, L.S. Frishkopf, W.A. Rosenblith, Extracranial responses to acoustic clicks in man. Science 128(3333), 1210–1211 (1958). doi:10.1126/science.128.3333.1210

    Article  Google Scholar 

  • A.S. Gevins, G.M. Zeitlin, S. Ancoli, C.L. Yeager, Computer rejection of EEG artifact. II. Contamination by drowsiness. Electroencephalogr. Clin. Neurophysiol. 43(1), 31–42 (1977)

    Article  Google Scholar 

  • C. Grozea, C.D. Voinescu, S. Fazli, Bristle-sensors – low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8(2), 025008 (2011)

    Article  Google Scholar 

  • M. Hassenzahl, N. Tractinsky, User experience – a research agenda. Behav. Inform. Technol. 25(2), 91–97 (2006). doi:10.1080/01449290500330331

    Article  Google Scholar 

  • L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006). doi:10.1038/nature04970

    Article  Google Scholar 

  • D.C. Jangraw, J. Wang, B.J. Lance, S.-F. Chang, P. Sajda, Neurally and ocularly informed graph-based models for searching 3D environments. J. Neural Eng. 11(4), 046003 (2014). doi:10.1088/1741-2560/11/4/046003

    Article  Google Scholar 

  • T.-P. Jung, S. Makeig, M. Stensmo, T.J. Sejnowski, Estimating alertness from the EEG power spectrum. IEEE Trans. Biomed. Eng. 44(1), 60–69 (1997). doi:10.1109/10.553713

    Article  Google Scholar 

  • F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zabranska et al., Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18(10), 1175–1177 (2011)

    Article  Google Scholar 

  • J.H. Kim, D.V. Gunn, E. Schuh, B. Phillips, R.J. Pagulayan, D. Wixon, Tracking real-time user experience (TRUE): a comprehensive instrumentation solution for complex systems, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2008), pp. 443–452. http://dl.acm.org/citation.cfm?id=1357126

  • D.J. Krusienski, E.W. Sellers, F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, A comparison of classification techniques for the P300 speller. J. Neural Eng. 3, 299–305 (2006). doi:10.1088/1741-2560/3/4/007

    Article  Google Scholar 

  • B.J. Lance, S.E. Kerick, A.J. Ries, K.S. Oie, K. McDowell, Brain-computer interface technologies in the coming decades. Proc. IEEE 100(Special Centennial Issue), 1585–1599 (2012). doi:10.1109/JPROC.2012.2184830

    Article  Google Scholar 

  • L.-D. Liao, C.-T. Lin, K. McDowell, A.E. Wickenden, K. Gramann, T.-P. Jung, L.-W. Ko, J.-Y. Chang, Biosensor technologies for augmented brain–computer interfaces in the next decades. Proc. IEEE 100(Special Centennial Issue), 1553–1566 (2012). doi:10.1109/JPROC.2012.2184829

    Article  Google Scholar 

  • L.-D. Liao, S.-L. Wu, C.-H. Liou, S.-W. Lu, S.-A. Chen, S.-F. Chen, L.-W. Ko, C.-T. Lin, A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors. IEEE Trans. Instrum. Meas. 63(6), 1545–1555 (2014). doi:10.1109/TIM.2013.2293222

    Article  Google Scholar 

  • C.-T. Lin, R.-C. Wu, S.-F. Liang, W.-H. Chao, Y.-J. Chen, T.-P. Jung, EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2726–2738 (2005). doi:10.1109/TCSI.2005.857555

    Article  Google Scholar 

  • Y.-P. Lin, Y. Wang, T.-P. Jung, Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset. J. Neuroeng. Rehabil. 11(1), 119 (2014). doi:10.1186/1743-0003-11-119

    Article  Google Scholar 

  • B. Lou, Y. Li, M.G. Philiastides, P. Sajda, Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making. Neuroimage 87, 242–251 (2014). doi:10.1016/j.neuroimage.2013.10.041

    Article  Google Scholar 

  • P. Luban. The design of free-to-play games. Gamasutra (2011). 22 Nov. http://www.gamasutra.com/view/feature/134920/the_design_of_freetoplay_games_.php

  • W. Luton, Free-to-Play: Making Money From Games You Give Away, 1st edn. (New Riders, 2013)

    Google Scholar 

  • D. Marshall, D. Coyle, S. Wilson, M. Callaghan, Games, gameplay, and BCI: the state of the art. IEEE Trans. Comput. Intell. AI Games 5(2), 82–99 (2013). doi:10.1109/TCIAIG.2013.2263555

    Article  Google Scholar 

  • G. Matthews, P.A. Desmond, Task-induced fatigue states and simulated driving performance. Q. J. Exp. Psychol. A Hum. Exp. Psychol. 55(2), 659–686 (2002). doi:10.1080/02724980143000505

    Article  Google Scholar 

  • K. McDowell, C.-T. Lin, K.S. Oie, J. Tzyy-Ping, S. Gordon, K.W. Whitaker, S.-Y. Li, S.-W. Lu, W.D. Hairston, Real-world neuroimaging technologies. IEEE Access 1, 131–149 (2013). doi:10.1109/ACCESS.2013.2260791

    Article  Google Scholar 

  • D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010). doi:10.1088/1741-2560/7/3/036007

    Article  Google Scholar 

  • S.R. Mitroff, A.T. Biggs, Mitroff, Biggs, The ultra-rare-item effect visual search for exceedingly rare items is highly susceptible to error. Psychol. Sci. (2013). doi:10.1177/0956797613504221

    Google Scholar 

  • C. Mühl, C. Jeunet, F. Lotte, EEG-based workload estimation across affective contexts. Neuroprosthetics 8, 114 (2014). doi:10.3389/fnins.2014.00114

    Google Scholar 

  • S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  • T. Partala, V. Surakka, Pupil size variation as an indication of affective processing. Int. J. Hum. Comput. Stud. 59(1), 185–198 (2003)

    Article  Google Scholar 

  • G. Pfurtscheller, B.Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R. Scherer, T.O. Zander, G. Mueller-Putz, C. Neuper, N. Birbaumer, The hybrid BCI. Front. Neurosci. 4 (2010). doi:10.3389/fnpro.2010.00003

    Google Scholar 

  • M.-Z. Poh, D.J. McDuff, R.W. Picard, Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011)

    Article  Google Scholar 

  • E.A. Pohlmeyer, J. Wang, D.C. Jangraw, B. Lou, S.-F. Chang, P. Sajda, Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases. J. Neural Eng. 8(3), 036025 (2011)

    Article  Google Scholar 

  • P. Sajda, E. Pohlmeyer, J. Wang, L.C. Parra, C. Christoforou, J. Dmochowski, B. Hanna, C. Bahlmann, M.K. Singh, S.-F. Chang, In a blink of an Eye and a switch of a transistor: cortically coupled computer vision. Proc. IEEE 98(3), 462–478 (2010). doi:10.1109/JPROC.2009.2038406

    Article  Google Scholar 

  • L. Schwarz, Humberto Remigio Gamba, Fabio Cabral Pacheco, Rodrigo Belisario Ramos, Miguel Antonio Sovierzoski, Pupil and iris detection in dynamic pupillometry using the OpenCV library, in 2012 5th International Congress on Image and Signal Processing (CISP) (2012), pp. 211–215. doi: 10.1109/CISP.2012.6469846

    Google Scholar 

  • B. Settles, in Active Learning Literature Survey, vol. 52 (University of Wisconsin, Madison, 2010), pp. 55–66

    Google Scholar 

  • D.A. Sternberg, K. Ballard, J.L. Hardy, K. Benjamin, P.M. Doraiswamy, M. Scanlon, The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Front. Hum. Neurosci. 7, 292 (2013). doi:10.3389/fnhum.2013.00292

    Article  Google Scholar 

  • T.J. Sullivan, S.R. Deiss, T.-P. Jung, G. Cauwenberghs, A brain-machine interface using dry-contact, low-noise EEG sensors, in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on (IEEE, 2008), pp. 1986–1989. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4541835

  • C. Thompson. Halo 3: how Microsoft labs invented a new science of play. http://archive.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo?currentPage=all Mag. 15(9) (2007). http://josquin.cti.depaul.edu/~rburke/courses/f07/gam224/doc/science_of_play.pdf

  • J. Touryan, G. Apker, B.J. Lance, S.E. Kerick, A.J. Ries, K. McDowell, Estimating endogenous changes in task performance from EEG. Neuroprosthetics 8, 155 (2014). doi:10.3389/fnins.2014.00155

    Google Scholar 

  • J. Van Erp, F. Lotte, M. Tangermann, Brain-computer interfaces: beyond medical applications. Computer 45(4), 26–34 (2012). doi:10.1109/MC.2012.107

    Article  Google Scholar 

  • G. Vanacker, R. del José, E.L. Millán, P.W. Ferrez, F.G. Moles, J. Philips, H. Van Brussel, M. Nuttin, Context-based filtering for assisted brain-actuated wheelchair driving. Comput. Intell. Neurosci. 2007, 3 (2007). doi:10.1155/2007/25130

    Article  Google Scholar 

  • L. Von Ahn, Games with a purpose. Computer 39(6), 92–94 (2006). doi:10.1109/MC.2006.196

    Article  Google Scholar 

  • L. Von Ahn, L. Dabbish, Designing games with a purpose. Commun. ACM 51(8), 58–67 (2008). doi:10.1145/1378704.1378719

    Article  Google Scholar 

  • J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). doi:10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  • D.D. Wu, C.G. Courtney, B.J. Lance, S.S. Narayanan, M.E. Dawson, K.S. Oie, T.D. Parsons, Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task. IEEE Trans. Affect. Comput. 1(2), 109–118 (2010). doi:10.1109/T-AFFC.2010.12

    Article  Google Scholar 

  • T.O. Zander, S. Jatzev, Context-aware brain–computer interfaces: exploring the information space of user, technical system and environment. J. Neural Eng. 9(1), 016003 (2012). doi:10.1088/1741-2560/9/1/016003

    Article  Google Scholar 

  • T.O. Zander, C. Kothe, Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025005 (2011). doi:10.1088/1741-2560/8/2/025005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent J. Lance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science Business Media Singapore (outside the USA)

About this entry

Cite this entry

Lance, B.J. et al. (2017). Towards Serious Games for Improved BCI. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds) Handbook of Digital Games and Entertainment Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-50-4_4

Download citation

Publish with us

Policies and ethics