Skip to main content

User-Centered BCI Videogame Design

  • Reference work entry
  • First Online:
Handbook of Digital Games and Entertainment Technologies

Abstract

This chapter aims to offer a user-centered methodological framework to guide the design and evaluation of Brain-Computer Interface videogames. This framework is based on the contributions of ergonomics to ensure these games are well suited for their users (i.e., players). It provides methods, criteria, and metrics to complete the different phases required by a human-centered design process. This aims to understand the context of use, specify the user needs, and evaluate the solutions in order to define design choices. Several ergonomic methods (e.g., interviews, longitudinal studies, user-based testing), objective metrics (e.g., task success, number of errors), and subjective metrics (e.g., mark assigned to an item) are suggested to define and measure the usefulness, usability, acceptability, hedonic qualities, appealingness, emotions related to user experience, immersion, and presence to be respected. The benefits and contributions of the user-centered framework for the ergonomic design of these Brain-Computer Interface videogames are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • B.Z. Allison, C. Neuper, Could anyone use a BCI? in Brain-Computer Interfaces (Springer, London, 2010), pp. 35–54

    Chapter  Google Scholar 

  • M. Anastassova, J.-M. Burkhardt, C. Mégard, A. Leservot, User-centred design of mixed reality for vehicle maintenance training: an empirical comparison of two techniques for user needs analysis, in HCI International (2005)

    Google Scholar 

  • B.S. Badia, H. Samaha, A.G. Morgade, P.F.M.J. Verschure, Exploring the synergies of a hybrid BCI – VR neurorehabilitation system, in International Conference on Virtual Rehabilitation (ICVR) (2011). doi: 10.1109/ICVR.2011.5971813

    Google Scholar 

  • A. Bandura, Self Efficacy: The Exercise of Control (Freeman, New York, 1997)

    Google Scholar 

  • S. Blain-Moraes, R. Schaff, K.L. Gruis, J.E. Huggins, P.A. Wren, Barriers to and mediators of brain-computer interface user acceptance: focus group findings. Ergonomics 55, 516–525 (2012). doi:10.1080/00140139.2012.661082

    Article  Google Scholar 

  • A. Blandford, T.R.G. Green, D. Furniss, S. Makri, Evaluating system utility and conceptual fit using CASSM. Int. J. Hum. Comput. Stud. 66, 393–409 (2008). doi:10.1016/j.ijhcs.2007.11.005

    Article  Google Scholar 

  • L. Bonnet, F. Lotte, A. Lécuyer, Two brains, one game: design and evaluation of a multi-user BCI video game based on motor imagery, in IEEE Transactions on Computational Intelligence and Artificial Intelligence in Games (IEEE TCIAIG), vol. 5 (2013), pp. 185–198. doi:10.1109/TCIAIG.2012.2237173

    Google Scholar 

  • J.H. Brockmyer, C.M. Fox, K.A. Curtiss, E. McBroom, K.M. Burkhart, J.N. Pidruzny, The development of the Game Engagement Questionnaire: a measure of engagement in video game-playing. J. Exp. Soc. Psychol. 45, 624–634 (2009). doi:10.1016/j.jesp.2009.02.016

    Article  Google Scholar 

  • J.-M. Burkhardt, T. Lubart, Creativity in the age of emerging technology: some issues and perspectives in 2010. Creativity Innov. Manag. 19, 160–166 (2010). doi:10.1111/j.1467-8691.2010.00559.x

    Article  Google Scholar 

  • M. Donnerer, A. Steed, Using a P300 brain-computer interface in an immersive virtual environment. Presence: Teleoperators Virtual Environ. 19, 12–24 (2010). doi:10.1162/pres.19.1.12

    Article  Google Scholar 

  • J.I. Ekandem, T.A. Davis, I. Alvarez, M.T. James, J.E. Gilbert, Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 55, 592–598 (2012). doi:10.1080/00140139.2012.662527

    Article  Google Scholar 

  • C. Escolano, J. Antelis, J. Minguez, Human brain-teleoperated robot between remote places, in IEEE International Conference on Robotics and Automation (ICRA) (2009), pp. 4430–4437. doi:10.1109/ROBOT.2009.5152639

    Google Scholar 

  • L. George, A. Lécuyer, An overview of research on “passive” brain-computer interfaces for implicit human-computer interaction, in International Conference on Applied Bionics and Biomechanics (2010)

    Google Scholar 

  • C. Groenegress, C. Holzner, C. Guger, M. Slater, Effects of p300-based BCI use on reported presence in a virtual environment. Presence: Teleoperators Virtual Environ. 19, 1–11 (2010). doi:10.1162/pres.19.1.1

    Article  Google Scholar 

  • C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller, How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11, 145–147 (2003)

    Article  Google Scholar 

  • H. Gürkök, A. Nijholt, M. Poel, M. Obbink, Evaluating a multi-player brain-computer interface game: challenge versus co-experience. Entertain. Comput. 4, 195–203 (2013). doi:10.1016/j.entcom.2012.11.001

    Article  Google Scholar 

  • H. Gürkök, B. van de Laar, D. Plass-Oude Bos, M. Poel, A. Nijholt, Players’ opinions on control and playability of a BCI game, in International Conference on Universal Access in Human-Computer Interaction (UAHCI) (2014), pp. 549–560. doi:10.1007/978-3-319-07440-5_50

    Google Scholar 

  • G. Hakvoort, H. Gürkök, D. Plass-Oude Bos, M. Obbink, M. Poel, Measuring immersion and affect in a brain-computer interface game, in Human-Computer Interaction – INTERACT 2011, ed. by P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, M. Winckler. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2011), pp. 115–128

    Chapter  Google Scholar 

  • M. Hassenzahl, The effect of perceived hedonic quality on product appealingness. Int. J. Hum. Comput. Interact. 13, 481–499 (2001). doi:10.1207/S15327590IJHC1304_07

    Article  Google Scholar 

  • S.I. Hjelm, C. Browall, Brainball – using brain activity for cool competition, in NordiCHI (2000)

    Google Scholar 

  • E.M. Holz, J. Höhne, P. Staiger-Sälzer, M. Tangermann, A. Kübler, Brain–computer interface controlled gaming: evaluation of usability by severely motor restricted end-users. Artif. Intell. Med. 59, 111–120 (2013). doi:10.1016/j.artmed.2013.08.001

    Article  Google Scholar 

  • W. IJsselsteijn, W. van den Hoogen, C. Klimmt, Y. de Kort, C. Lindley, K. Mathiak, K. Poels, N. Ravaja, M. Turpeinen, and P. Vorderer. Measuring the experience of digital game enjoyment. In A.J. Spink, M.R. Ballintijn, N.D. Bogers, F. Grieco, L.W.S. Loijens, L.P.J.J. Noldus, G. Smit, and P.H. Zimmerman (Eds.), Proceedings of Measuring Behavior (2008), Maastricht, The Netherland, August 26–29, 2008

    Google Scholar 

  • I. Iturrate, J.M. Antelis, A. Kübler, J. Minguez, A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25, 614–627 (2009). doi:10.1109/TRO.2009.2020347

    Article  Google Scholar 

  • C. Jeunet, A. Cellard, S. Subramanian, M. Hachet, B. N’Kaoua, F. Lotte, How well can we learn with standard BCI training approaches? A pilot study, in International Brain-Computer Interface Conference (2014)

    Google Scholar 

  • A. Kübler, E.M. Holz, C. Zickler, T. Kaufmann, A user centred approach for bringing BCI controlled applications to end-users, in Brain-Computer Interface Systems – Recent Progress and Future Prospects, ed. by R. Fazel-Rezai (InTech, Croatia 2013). doi:10.5772/55802

    Google Scholar 

  • F. Lotte, Y. Renard, A. Lécuyer, Self-paced brain-computer interaction with virtual worlds: a qualitative and quantitative study “out-of-the-lab,” in International Brain-Computer Interface Workshop and Training Course (2008)

    Google Scholar 

  • F. Lotte, J. Faller, C. Guger, Y. Renard, G. Pfurtscheller, A. Lécuyer, R. Leeb, Combining BCI with virtual reality: towards new applications and improved BCI, in Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications, ed. by B.Z. Allison, S. Dunne, R. Leeb, J.R. Millán, A. Nijholt (Springer, Berlin/Heidelberg, 2013). doi:10.1007/978-3-642-29746-5_10

    Google Scholar 

  • E. Loup-Escande, O. Christmann, Requirements prioritization by end-users and consequences on design of a virtual reality software: an exploratory study, in International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE) (2013), pp. 5–14

    Google Scholar 

  • E. Loup-Escande, J.-M. Burkhardt, S. Richir, Anticipating and evaluating the usefulness of emerging technologies in ergonomic design: a review of usefulness in design. Le travail Humain 76, 25–55 (2013b). doi:10.3917/th.761.0027

    Article  Google Scholar 

  • S. Mahlke, M. Minge, M. Thüring, Measuring multiple components of emotions in interactive contexts, in CHI Extended Abstracts on Human Factors in Computing Systems (2006), pp.1061–1066. doi:10.1145/1125451.1125653

    Google Scholar 

  • C. Mühl, Neurophysiological assessment of affective experience, in Affective Computing and Intelligent Interaction (2009)

    Google Scholar 

  • G. Müller-Putz, R. Scherer, G. Pfurtscheller, Game-like training to learn single switch operated neuroprosthetic control, in Internationational Conference on Advances in Computer Entertainment Technology (2007)

    Google Scholar 

  • M. Mulvenna, G. Lightbody, E. Thomson, P.J. McCullagh, M. Ware, S. Martin, Realistic expectations with brain computer interfaces. J. Assist. Technol. 6, 233–245 (2012). doi:10.1108/17549451211285735

    Article  Google Scholar 

  • F. Nijboer, N. Birbaumer, A. Kubler, The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis – a longitudinal study. Front. Neurosci. 4 (2010). doi:10.3389/fnins.2010.00055

    Google Scholar 

  • A. Nijholt, H. Gürkök, Multi-brain games: cooperation and competition, in Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for Inclusion, ed. by C. Stephanidis, M. Antona. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2013), pp. 652–661

    Google Scholar 

  • D. Plass-Oude Bos, B. Reuderink, B. Laar, H. Gürkök, C. Mühl, M. Poel, A. Nijholt, D. Heylen, Brain-computer interfacing and games, in Brain-Computer Interfaces, Human-Computer Interaction Series, ed. by D.S. Tan, A. Nijholt (Springer, London, 2010), pp. 149–178

    Google Scholar 

  • D. Plass-Oude Bos, M. Poel, A. Nijholt, A study in user-centered design and evaluation of mental tasks for BCI, in International Conference on Advances in multimedia modeling (2011), pp. 122–134. doi:10.1007/978-3-642-17829-0_12

    Google Scholar 

  • A.T. Pope, C.L. Stevens, Interpersonal biocybernetics: connecting through social psychophysiology, in ACM International Conference on Multimodal Interaction (2012), pp. 561–566. doi:10.1145/2388676.2388795

    Google Scholar 

  • P. Rabardel, P. Beguin, Instrument mediated activity: from subject development to anthropocentric design. Theor. Iss. Ergon. Sci. 6, 429–461 (2005). doi:10.1080/14639220500078179

    Article  Google Scholar 

  • S. Robertson, Requirements trawling: techniques for discovering requirements. Int. J. Hum. Comput. Stud. 55, 405–421 (2001). doi:10.1006/ijhc.2001.0481

    Article  MATH  Google Scholar 

  • M.V. Sanchez-Vives, M. Slater, From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)

    Article  Google Scholar 

  • R. Scherer, G. Moitzi, I. Daly, G.R. Muller-Putz, On the use of games for noninvasive EEG-based functional brain mapping. IEEE Trans. Comput. Intell. AI Games 5, 155–163 (2013). doi:10.1109/tciaig.2013.2250287

    Article  Google Scholar 

  • M. Schreuder, A. Riccio, M. Risetti, S. Dähne, A. Ramsav, J. Williamson, D. Mattia, M. Tangermann, User-centered design in brain–computer interfaces – a case study. Artif. Intell. Med. 59, 71–80 (2013). doi:10.1016/j.artmed.2013.07.005

    Article  Google Scholar 

  • M. Slater, Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B 364(1535), 3549–3557 (2009)

    Article  Google Scholar 

  • E. Thomas, M. Dyson, M. Clerc, An analysis of performance evaluation for motor-imagery based BCI. J. Neural Eng. (2013). doi:10.1088/1741-2560/10/3/031001

    Google Scholar 

  • G. Valsan, B. Grychtol, H. Lakany, B.A. Conway, The Strathclyde brain computer interface, in IEEE Engineering in Medicine and Biology Society (2009), pp. 606–609. doi:10.1109/IEMBS.2009.5333506

    Google Scholar 

  • B. Van de Laar, H. Gurkok, D. Plass-Oude Bos, F. Nijboer, A. Nijholt, Perspectives on user experience evaluation of brain-computer interfaces, in Universal Access in Human-Computer Interaction – Users Diversity, ed. by C. Stephanidis. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2011), pp. 600–609

    Chapter  Google Scholar 

  • V. Venkatesh, M.G. Morris, G.B. Davis, F.D. Davis, User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)

    Google Scholar 

  • B.G. Witmer, M.J. Singer, Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators Virtual Environ. 7, 225–240 (1998). doi:10.1162/105474698565686

    Article  Google Scholar 

  • J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, T. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  • N. Yan, J. Wang, M. Liu, L. Zong, Y. Jiao, J. Yue, Y. Lv, Q. Yang, H. Lan, Z. Liu, Designing a brain-computer interface device for neurofeedback using virtual environments. J. Med. Biol. Eng. 28, 167–172 (2008)

    Google Scholar 

  • F. Yang, W. Chen, B. Wu, Y. Qi, J. Luo, Y. Su, J. Dai, X. Zheng, An adaptive BCI system for virtual navigation, in International Conference on Information Science and Engineering (ICISE) (2010), pp. 64–68. doi:10.1109/ICISE.2010.5688650

    Google Scholar 

  • C. Zickler, S. Halder, S.C. Kleih, C. Herbert, A. Kübler, Brain painting: usability testing according to the user-centered design in end users with severe motor paralysis. Artif. Intell. Med. 59, 99–110 (2013). doi:10.1016/j.artmed.2013.08.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Loup-Escande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this entry

Cite this entry

Loup-Escande, E., Lotte, F., Loup, G., Lécuyer, A. (2017). User-Centered BCI Videogame Design. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds) Handbook of Digital Games and Entertainment Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-50-4_3

Download citation

Publish with us

Policies and ethics