Skip to main content

Analysis of Vitamin D Metabolites by Mass Spectrometry

  • Living reference work entry
  • First Online:

Synonyms

Mass spectrometric analysis of vitamin D metabolites; Vitamin D metabolite analysis by mass spectrometry

Introduction

This chapter provides an overview of the state-of-the-art of mass spectral analysis of vitamin D and its metabolites. Most activities in the vitamin D analytical field today center around clinical measurements, and emphasis in the following sections is therefore placed on vitamin D in human samples, mostly from serum or plasma. Virtually all modern mass spectrometry analyses of vitamin D are performed using hyphenated liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Measurements using gas chromatography (GC)-MS are now rarely performed, mainly because of problems with compound degradations during analysis. For those readers interested in GC-MS of vitamin D compounds, the present authors refer to an excellent review by Vouros and coworkers (Gathungu et al. 2013). Food analysis is also not addressed in this chapter, as requirements are quite...

This is a preview of subscription content, log in via an institution.

References

  • Abdel-Khalik J, Crick PJ, Carter GD, Makin HL, Wang Y, Griffiths WJ. Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography-tandem mass spectrometry using enzyme-assisted derivatisation. Biochem Biophys Res Commun. 2014;446(3):745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamec J, Jannasch A, Huang J, Hohman E, Fleet JC, Peacock M, et al. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J Sep Sci. 2011;34(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  • Aronov PA, Hall LM, Dettmer K, Stephensen CB, Hammock BD. Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2008;391(5):1917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey D, Veljkovic K, Yazdanpanah M, Adeli K. Analytical measurement and clinical relevance of vitamin D3 C3-epimer. Clin Biochem. 2013;46(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Perumal N, Yazdanpanah M, Al Mahmud A, Baqui AH, Adeli K, et al. Maternal-fetal-infant dynamics of the C3-epimer of 25-hydroxyvitamin D. Clin Biochem. 2014;47(9):816–22.

    Article  CAS  PubMed  Google Scholar 

  • Berg AH, Powe CE, Evans MK, Wenger J, Ortiz G, Zonderman AB, et al. 24,25-dihydroxyvitamin d3 and vitamin D status of community-dwelling black and white Americans. Clin Chem. 2015;61(6):877–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binkley NC, Lappe J, Singh RJ, Khosla S, Krueger D, Drezner M, et al. Can vitamin D metabolite measurements facilitate a “treat-to-target” paradigm to guide vitamin D supplementation? Osteoporos Int. 2015;26:1655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogusz MJ, Al Enazi E, Tahtamoni M, Jawaad JA, Al Tufail M. Determination of serum vitamins 25-OH-D2 and 25-OH-D3 with liquid chromatography-tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray source and core-shell or sub-2 μm particle columns: a comparative study. Clin Biochem. 2011;44(16):1329–37.

    Article  CAS  PubMed  Google Scholar 

  • Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN, Ruzinski J, Young B, et al. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int. 2012;82(6):693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce SJ, Rochat B, Béguin A, Pesse B, Guessous I, Boulat O, et al. Analysis and quantification of vitamin D metabolites in serum by ultra-performance liquid chromatography coupled to tandem mass spectrometry and high-resolution mass spectrometry – a method comparison and validation. Rapid Commun Mass Spectrom. 2013;27(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  • Bunch DR, Miller AY, Wang S. Development and validation of a liquid chromatography-tandem mass spectrometry assay for serum 25-hydroxyvitamin D2/D3 using a turbulent flow online extraction technology. Clin Chem Lab Med. 2009;47(12):1565–72.

    Article  CAS  PubMed  Google Scholar 

  • Burild A, Frandsen HL, Poulsen M, Jakobsen J. Quantification of physiological levels of vitamin D3 and 25-hydroxyvitamin D3 in porcine fat and liver in subgram sample sizes. J Sep Sci. 2014;37(19):2659–63.

    Article  CAS  PubMed  Google Scholar 

  • Carter GD. Accuracy of 25-hydroxyvitamin D assays: confronting the issues. Curr Drug Targets. 2011;12(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  • Carter GD. 25-Hydroxyvitamin D: a difficult analyte. Clin Chem. 2012;58(3):486–8.

    Article  CAS  PubMed  Google Scholar 

  • Carter GD, Carter CR, Gunter E, Jones J, Jones G, Makin HLJ, et al. Measurement of vitamin D metabolites: an international perspective on methodology and clinical interpretation. J Steroid Biochem Mol Biol. 2004;89–90(1–5):467–71.

    Article  PubMed  Google Scholar 

  • Carter GD, Berry JL, Gunter E, Jones G, Jones JC, Makin HLJ, et al. Proficiency testing of 25-hydroxyvitamin D (25-OHD) assays. J Steroid Biochem Mol Biol. 2010;121(1–2):176–9.

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Postigo M, Muñoz-Garach A, Serrano M, Garrido-Sánchez L, Bernal-López MR, Fernández-García D, et al. Serum 25-hydroxyvitamin D and adipose tissue vitamin D receptor gene expression: relationship with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2015;100:2014–3016.

    Article  Google Scholar 

  • Couchman L, Benton CM, Moniz CF. Variability in the analysis of 25-hydroxyvitamin D by liquid chromatography-tandem mass spectrometry: the devil is in the detail. Clin Chim Acta. 2012;413(15–16):1239–43.

    Article  CAS  PubMed  Google Scholar 

  • Crawford BA, Labio ED, Strasser SI, McCaughan GW. Vitamin D replacement for cirrhosis-related bone disease. Nat Clin Pract Gastroenterol Hepatol. 2006;3(12):689–99.

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Schoenmakers I, Jones K, Koulman A, Prentice A, Volmer DA. Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS. Anal Bioanal Chem. 2010;398(2):779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Weinstock-Guttman B, Wang H, Bang E, Li J, Ramanathan M, et al. Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry. Anal Chem. 2010;82(6):2488–97.

    Article  CAS  PubMed  Google Scholar 

  • Eyles D, Anderson C, Ko P, Jones A, Thomas A, Burne T, et al. A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots. Clin Chim Acta. 2009;403(1–2):145–51.

    Article  CAS  PubMed  Google Scholar 

  • Eyles DW, Morley R, Anderson C, Ko P, Burne T, Permezel M, et al. The utility of neonatal dried blood spots for the assessment of neonatal vitamin D status. Paediatr Perinat Epidemiol. 2010;24(3):303–8.

    Article  PubMed  Google Scholar 

  • Flynn N, Lam F, Dawnay A. Enhanced 3-epi-25-hydroxyvitamin D3 signal leads to overestimation of its concentration and amplifies interference in 25-hydroxyvitamin D LC-MS/MS assays. Ann Clin Biochem. 2014;51(Pt 3):352–9.

    Article  CAS  PubMed  Google Scholar 

  • Gallo S, Comeau K, Vanstone C, Agellon S, Sharma A, Jones G, et al. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial. JAMA. 2013;309(17):1785–92.

    Article  CAS  PubMed  Google Scholar 

  • Gathungu RM, Flarakos CC, Reddy GS, Vouros P. The role of mass spectrometry in the analysis of vitamin D compounds. Mass Spectrom Rev. 2013;32(1):72–86.

    Article  CAS  PubMed  Google Scholar 

  • Geib T, Meier F, Schorr P, Lammert F, Stokes CS, Volmer DA. A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels. J Mass Spectrom. 2015;50(1):275–9.

    Article  CAS  PubMed  Google Scholar 

  • Geib T, Sleno L, Hall R, Stokes CS, Volmer DA. Triple quadrupole versus high resolution quadrupole-time-of-flight mass spectrometry for quantitative LC-MS/MS analysis of 25-hydroxyvitamin D in human serum. J Am Soc Mass Spectrom. 2016;27(8):1404–10. doi:10.1007/s13361-016-1412-2.

    Article  CAS  PubMed  Google Scholar 

  • Goldman MM, Viec KV, Caulfield MP, Reitz RE, McPhaul MJ, Clarke NJ. The measurement of 3-epimer 25-hydroxyvitamin d by mass spectrometry in clinical specimens detects inconsequential levels in adult subjects. J Invest Med. 2014;62(4):690–5.

    Article  CAS  Google Scholar 

  • Gören AC, Bilsel G, Bilsel M. Rapid and simultaneous determination of 25-OH-vitamin D 2 and D 3 in human serum by LC/MS/MS: validation and uncertainty assessment. J Chem Metrol. 2007;1:1–9.

    Article  Google Scholar 

  • Heath AK, Williamson EJ, Ebeling PR, Kvaskoff D, Eyles DW, English DR. Measurements of 25-hydroxyvitamin D concentrations in archived dried blood spots are reliable and accurately reflect those in Plasma. J Clin Endocrinol Metab. 2014;99(9):3319–24.

    Article  CAS  PubMed  Google Scholar 

  • Hedman CJ, Wiebe DA, Dey S, Plath J, Kemnitz JW, Ziegler TE. Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 dihydroxyvitamin D2&3 measurement using a novel derivatization agent. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;953–954(1):62–7.

    Article  PubMed  Google Scholar 

  • Herrmann M, Harwood T, Gaston-Parry O, Kouzios D, Wong T, Lih A, et al. A new quantitative LC tandem mass spectrometry assay for serum 25-hydroxy vitamin D. Steroids. 2010;75(13–14):1106–12.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Awada D, Shimada K. Simultaneous determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma by liquid chromatography-tandem mass spectrometry employing derivatization with a Cookson-type reagent. Biol Pharm Bull. 2001a;24(7):738–43.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Awada D, Shimada K. Determination of 24,25-dihydroxyvitamin D3 in human plasma using liquid chromatography-mass spectrometry after derivatization with a Cookson-type reagent. Biomed Chromatogr. 2001b;15(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Shibayama Y, Fuji M, Shimada K. Liquid chromatography-tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal Bioanal Chem. 2008;391(1):229–38.

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Suzuki M, Hanai J, Inagaki S, Min JZ, Shimada K, et al. A specific LC/ESI-MS/MS method for determination of 25-hydroxyvitamin D3 in neonatal dried blood spots containing a potential interfering metabolite, 3-epi-25-hydroxyvitamin D3. J Sep Sci. 2011;34(7):725–32.

    Article  CAS  PubMed  Google Scholar 

  • Hoeller U, Quintana AP, Gössl R, Olszewski K, Riss G, Schattner A, et al. Rapid determination of 25-hydroxy vitamin D3 in swine tissue using an isotope dilution HPLC-MS assay. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(13–14):963–8.

    Article  CAS  Google Scholar 

  • Hoeller U, Baur M, Roos FF, Brennan L, Daniel H, Fallaize R, et al. Application of dried blood spots to determine vitamin D status in a large nutritional study with unsupervised sampling: the Food4Me project. Br J Nutr. 2015;25:1–10.

    Google Scholar 

  • Holick M. Vitamin D, status: measurement, interpretation and clinical application. Ann Epidemiol. 2009;19(2):73–8.

    Article  PubMed  Google Scholar 

  • Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  • Hollick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT, Anderson RR, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210(4466):203–5.

    Article  Google Scholar 

  • Holmøy T, Moen SM, Gundersen TA, Holick MF, Fainardi E, Castellazzi M, et al. 25-hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis. Mult Scler. 2009;15(11):1280–5.

    Article  PubMed  Google Scholar 

  • Hopfgartner G, Tonoli D, Varesio E. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal Bioanal Chem. 2012;402(8):2587–96.

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson C, Taylor A, Hassan-Smith Z, Adams J, Steward P, Hewison M, et al. High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1014:56–63.

    Article  CAS  PubMed  Google Scholar 

  • Jessome LL, Volmer DA. Ion suppression: a major concern in mass spectrometry. LCGC North Am. 2006;24(5):83–9.

    Google Scholar 

  • Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6.

    CAS  PubMed  Google Scholar 

  • Kamao M, Tatematsu S, Hatakeyama S, Sakaki T, Sawada N, Inouye K, et al. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J Biol Chem. 2004;279(16):15897–907.

    Article  CAS  PubMed  Google Scholar 

  • Keevil B. Does the presence of 3-epi-25OHD3 affect the routine measurement of vitamin D using liquid chromatography tandem mass spectrometry? Clin Chem Lab Med. 2012;50(1):181–3.

    Article  CAS  Google Scholar 

  • Kim JH, Woenker T, Adamec J, Regnier FE. Simple, miniaturized blood plasma extraction method. Anal Chem. 2013;85(23):11501–8.

    Article  CAS  PubMed  Google Scholar 

  • Kushnir MM, Ray JA, Rockwood AL, Roberts WL, La’ulu SL, Whittington JE, et al. Rapid analysis of 25-hydroxyvitamin D(2) and D(3) by liquid chromatography-tandem mass spectrometry and association of vitamin D and parathyroid hormone concentrations in healthy adults. Am J Clin Pathol. 2010;134(1):148–56.

    Article  CAS  PubMed  Google Scholar 

  • Laha TJ, Strathmann FG, Wang Z, De Boer IH, Thummel KE, Hoofnagle AN. Characterizing antibody cross-reactivity for immunoaffinity purification of analytes prior to multiplexed liquid chromatography-tandem mass spectrometry. Clin Chem. 2012;58(12):1711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lensmeyer G, Poquette M, Wiebe D, Binkley N. The C-3 epimer of 25-hydroxyvitamin D(3) is present in adult serum. J Clin Endocrinol Metab. 2012;97(1):163–8.

    Article  CAS  PubMed  Google Scholar 

  • Liebisch G, Matysik S. Accurate and reliable quantification of 25-hydroxy-vitamin D species by liquid chromatography high-resolution tandem mass spectrometry. J Lipid Res. 2015;56(6):1234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipkie TE, Janasch A, Cooper BR, Hohman EE, Weaver CM, Ferruzzi MG. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;932:6–11.

    Article  CAS  PubMed  Google Scholar 

  • Malmberg P, Karlsson T, Svensson H, Lönn M, Carlsson NG, Sandberg AS, et al. A new approach to measuring vitamin D in human adipose tissue using time-of-flight secondary ion mass spectrometry: a pilot study. J Photochem Photobiol B Biol. 2014;138:295–301.

    Article  CAS  Google Scholar 

  • Maurer HH. What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? J Chromatogr A. 2013;31(1292):19–24.

    Article  Google Scholar 

  • Müller MJ, Volmer DA. Mass spectrometric profiling of Vitamin D metabolites beyond 25-hydroxyvitamin D. Clin Chem. 2015;61(8):1033–48.

    Article  PubMed  Google Scholar 

  • Müller MJ, Stokes CS, Lammert F, Volmer DA. Chemotyping the distribution of vitamin D metabolites in human serum. Sci Rep. 2016;6:21080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutt SJ, Hyppönen E, Saarnio J, Järvelin MR, Herzig KH. Vitamin D and adipose tissue-more than storage. Front Physiol. 2014;5:228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26(5):662–87.

    Article  CAS  PubMed  Google Scholar 

  • Newman MS, Brandon TR, Groves MN, Gregory WL, Kapur S, Zava DT. A liquid chromatography/tandem mass spectrometry method for determination of 25-hydroxy vitamin D2 and 25-hydroxy vitamin D3 in dried blood spots: a potential adjunct to diabetes and cardiometabolic risk screening. J Diabetes Sci Technol. 2009;3(1):156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Ooki S, Shinoda K, Higashi T. Analysis of urinary vitamin D3 metabolites by liquid chromatography/tandem mass spectrometry with ESI-enhancing and stable isotope-coded derivatization. Anal Bioanal Chem. 2014;406(26):6646–54.

    Article  Google Scholar 

  • Ooms N, van Daal H, Beijers AM, Gerrits GP, Semmekrot BA, van den Ouweland JMW. Time-course analysis of 3-epi-25-hydroxyvitamin D3 shows markedly elevated levels in early life, particularly from vitamin D supplementation in preterm infants. Pediatr Res. 2016;79(4):647–53.

    Article  CAS  PubMed  Google Scholar 

  • Phinney KW, Bedner M, Tai SS, Vamathevan VV, Sander LC, Sharpless KE, et al. Development and certification of a standard reference material for vitamin D metabolites in human serum. Anal Chem. 2012;84(2):956–62.

    Article  CAS  PubMed  Google Scholar 

  • Piccolo BD, Dolnikowski G, Seyoum E, Thomas AP, Gertz ER, Souza EC, et al. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults. Nutrients. 2013;5(9):3352–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Geib T, Schorr P, Meier F, Volmer DA. On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. Rapid Commun Mass Spectrom. 2014;29(1):1–9.

    Article  Google Scholar 

  • Ramanathan R, Jemal M, Ramagiri S, Xia YQ, Humpreys WG, Olah T, et al. It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS. J Mass Spectrom. 2011;46(6):595–601.

    Article  CAS  PubMed  Google Scholar 

  • Raml R, Ratzer M, Obermayer-Pietsch B, Mautner A, Pieber TR, Sinner FM, et al. Quantifying vitamin D and its metabolites by LC/Orbitrap MS. Anal Methods. 2015;7(20):8961–6.

    Article  CAS  Google Scholar 

  • Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 dietary reference intakes for calcium and vitamin D: what dietetics practitioners need to know. J Am Diet Assoc. 2011;111(4):524–7.

    Article  CAS  PubMed  Google Scholar 

  • Schleicher RL, Encisco SE, Chaudhary-Webb M, Paliakov E, McCoy LF, Pfeiffer CM. Isotope dilution ultra performance liquid chromatography-tandem mass spectrometry method for simultaneous measurement of 25-hydroxyvitamin D2, 25-hydroxyvitamin D3 and 3-epi-25-hydroxyvitamin D3 in human serum. Clin Chim Acta. 2011;412(17–18):1594–9.

    Article  CAS  PubMed  Google Scholar 

  • Sempos CT, Vesper HW, Phinney KW, Thienpont LM, Coates PM. Vitamin D status as an international issue: national surveys and the problem of standardization. Scand J Clin Lab Invest Suppl. 2012;243:32–40.

    PubMed  Google Scholar 

  • Shah I, James R, Barker J, Petroczi A, Naughton DP. Misleading measures in vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutr J. 2011;10(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RJ, Taylor RL, Reddy GS, Grebe SKG. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91(8):3055–61.

    Article  CAS  PubMed  Google Scholar 

  • Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39(10):1091–112.

    Article  CAS  PubMed  Google Scholar 

  • Stepman HCM, Vanderroost A, Van Uytfanghe K, Thienpont LM. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem. 2011;57(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  • Stiles AR, Kozlitina J, Thompson BM, McDonald JG, King KS, Russell DW. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A. 2014;111(38):E4006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes CS, Volmer DA, Grünhage F, Lammert F. Vitamin D in chronic liver disease. Liver Int. 2013;33(3):338–52.

    Article  CAS  PubMed  Google Scholar 

  • Strathmann FG, Sadilkova K, Laha TJ, LeSourd SE, Bornhorst JA, Hoofnagle AN, et al. 3-epi-25 hydroxyvitamin D concentrations are not correlated with age in a cohort of infants and adults. Clin Chim Acta. 2012;413(1–2):203–6.

    Article  CAS  PubMed  Google Scholar 

  • Strobel N, Buddhadasa S, Adorno P, Stockham K, Greenfield H. Vitamin D and 25-hydroxyvitamin D determination in meats by LC-IT-MS. Food Chem. 2013;138(2–3):1042–7.

    Article  CAS  PubMed  Google Scholar 

  • Stubbs JR, Zhang S, Friedman PA, Nolin TD. Decreased conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in patients with CKD. Clin J Am Soc Nephrol. 2014;9(11):1965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai SS-C, Bedner M, Phinney KW. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2010;82(5):1942–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevis M, Volmer DA. Recent instrumental progress in mass spectrometry: advancing resolution, accuracy, and speed of drug detection. Drug Test Anal. 2012;4(3–4):242–5.

    Article  CAS  PubMed  Google Scholar 

  • Thibeault D, Caron N, Djiana R, Kremer R, Blank D. Development and optimization of simplified LC-MS/MS quantification of 25-hydroxyvitamin D using protein precipitation combined with on-line solid phase extraction (SPE). J Chromatogr B Analyt Technol Biomed Life Sci. 2012;883–884:120–7.

    Article  PubMed  Google Scholar 

  • Thomson BM, Cressey PJ. Determination of vitamin D in foods: current knowledge and data gaps. MPI technical paper no: 2014/03, New Zealand Ministry of Agriculture and Forestry, 2014.

    Google Scholar 

  • van den Ouweland JM, Vogeser M, Bächer S. Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr. 2013;14(2):159–84.

    CAS  Google Scholar 

  • van den Ouweland JM, Beijers AM, van Daal H. Overestimation of 25-hydroxyvitamin D3 by increased ionisation efficiency of 3-epi-25-hydroxyvitamin D3 in LC-MS/MS methods not separating both metabolites as determined by an LC-MS/MS method for separate quantification of 25-hydroxyvitamin D3, 3-epi-25-h 3-epi-25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;967:195–202.

    Article  PubMed  Google Scholar 

  • Van Leeuwen JPTM, Van Den Bemd GJCM, Van Driel M, Buurman CJ, Pols HAP. 24,25-dihydroxyvitamin D3 and bone metabolism. Steroids. 2001;66(3–5):375–80.

    Article  PubMed  Google Scholar 

  • Vogeser M, Kyriatsoulis A, Huber E, Kobold U. Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatography-tandem mass spectrometry. Clin Chem. 2004;50(8):1415–7.

    Article  CAS  PubMed  Google Scholar 

  • Volmer DA, Mendes LRBC, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom Rev. 2015;34(1):2–23.

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Hanwell HE, Schnabl K, Yazdanpanah M, Kimball S, Fu L, et al. The ratio of serum 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 is predictive of 25-hydroxyvitamin D3 response to vitamin D3 supplementation. J Steroid Biochem Mol Biol. 2011;126(3–5):72–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Senn T, Kalhorn T, Zheng XE, Zheng S, Davis CL, et al. Simultaneous measurement of plasma vitamin D(3) metabolites, including 4beta,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal Biochem. 2011;418(1):126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiebe D, Binkley N. Case report: three patients with substantial serum levels of 3-epi-25(OH)D including one with 3-epi-25(OH)D2 while on high-dose ergocalciferol. J Clin Endocrinol Metab. 2014;99(4):1117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wortsman J, Matsuoka LY, Chen TC, Lu Z, Hollick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  • Yetley EA, Pfeiffer CM, Schleicher RL, Phinney KW, Lacher DA, Christakos S, et al. NHANES monitoring of serum 25-hydroxyvitamin D: a roundtable summary. J Nutr. 2010;140(11):2030S–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerwekh JE. Blood biomarkers of vitamin D status. Am J Clin Nutr. 2008;87(4):1087–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich A. Volmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this entry

Cite this entry

Volmer, D.A., Stokes, C.S. (2016). Analysis of Vitamin D Metabolites by Mass Spectrometry. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics