Skip to main content

Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms

  • Living reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Bacillus thuringiensis (Bt) insecticidal Cry toxins have been shown to be effective in controlling insect pests either in spray products or expressed in transgenic crops. All Cry toxins are expressed as protoxins that undergo proteolytic processing in the insect gut releasing the activated toxin. It has been shown that activated toxin binds to different insect protein molecules in gut cells leading to oligomerization, membrane insertion, and pore formation. However, it was recently shown that not only the activated toxin is able to specifically interact with receptors, since Cry1A protoxins bind gut receptor molecules leading also to oligomerization, membrane insertion, and pore formation. The final pores induced by protoxin or by activated toxin have different characteristics, suggesting dual mode of action of Cry proteins. In addition it was shown that different Cry1A resistant populations from different insect species are significantly more susceptible to Cry1A protoxins than to Cry1A activated toxins, supporting that Cry1A proteins may undergo two toxic pathways one involving protoxin binding to receptors and another involving the binding of activated Cry toxins to gut receptor molecules. Here the authors will revise this dual mode of action of Cry proteins and discuss implications of the dual mode of action of Cry proteins for insect pest management in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anilkumar KJ, Rodrigo-Simón A, Ferré J, Pusztai-Carey M, Sivasupramaniam S, Moar WJ. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol. 2008;74:462–9.

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol. 2005;348:363–82.

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Zhuang M, Gill SS, Soberón M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta. 2004;1667:38–46.

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Martinez-de-Castro DL, Sánchez-Quintana J, Cantón PE, Mendoza G, Gómez I, Pacheco S, García-Gómez BI, Onofre J, Soberón M. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests. In: Alouf JE, Ladant D, Popoff MR, editors. Comprehensive sourcebook of bacterial protein toxins. 4ath ed. Boston: Acad Press; 2015.

    Google Scholar 

  • Chakroun M, Banylus N, Bel Y, Escriche B, Ferre J. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev. 2016;80(2):329–50.

    Article  PubMed  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler DR. Bacillus thuringiensis toxin nomenclature [Internet]. 2016. Available from http://www.btnomenclature.info/

  • de Maagd R, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. TIG. 2001;17:193–9.

    Article  PubMed  Google Scholar 

  • Evdokimov A, Moshiri F, Sturman EJ, Rydel TJ, Zheng M, Seale JW, Franklin S. Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Sci. 2014;23:1491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrick JA, Tabashnik BE. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochem Mol Biol. 2007;37:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Fabrick JA, Mathew LG, Tabashnik BE, Li X. Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol. 2011;20:651–65.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Escobar B, Rodríguez-Magadan H, Bravo A, Soberón M, Gómez I. Manduca sexta aminopeptidase-n and alkaline phosphatase have a differential role in the mode of action of Cry1Aa, Cry1Ab and Cry1Ac toxins from Bacillus thuringiensis. Appl Environ Microbiol. 2013;79:4543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens. Science. 2001;293:857–60.

    Article  CAS  PubMed  Google Scholar 

  • Gassman AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. Field-evolved resistance to Bt maize by western corn rootworm. PLoS One. 2013;6(7):e22629.

    Article  Google Scholar 

  • Girard F, Vachon V, Prefontaine G, Marceau L, Larouche G, Vincent C, Schwartz J-L, Masson L, Laprade R. Cysteine scanning mutagenesis of alpha 4 a putative pore forming helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Appl Environ Microbiol. 2008;74:2565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez I, Sánchez J, Miranda R, Bravo A, Soberón M. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 2002;513:242–6.

    Article  PubMed  Google Scholar 

  • Gómez I, Arenas I, Benitez I, Miranda-Ríos J, Becerril B, Grande AR, Almagro JC, Bravo A, Soberón M. Specific epitopes of Domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem. 2006;281:34032–9.

    Article  PubMed  Google Scholar 

  • Gómez I, Sanchez J, Muñoz-Garay C, Matus V, Gill SS, Soberón M, Bravo A. Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: two distinct pre-pores are involved in toxicity. Biochem J. 2014;459:383–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heckel D. Roles of ABC proteins in the mechanism and management of Bt resistance. In: Soberón M, Gao Y, Bravo A, editors. Bt resistance – characterization and strategies for GM crops expressing Bacillus thuringiensis toxins. CABI; Wallingford, Oxfordshire, 2015.

    Google Scholar 

  • Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes. BMC Genomics. 2005;24:6–96.

    Google Scholar 

  • Hua G, Jurat-Fuentes JL, Adang MJ. Fluorescent based assay establish Manduca sexta Bt-R1 cadherin as receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochem Mol Biol. 2004;34:193–202.

    Article  CAS  PubMed  Google Scholar 

  • Hui F, Scheib U, Hu Y, Sommer RJ, Aroian RV, Ghosh P. Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry. 2012;51:9911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James C. Global status of commercialized biotech/GM Crops: 2015, ISAAA briefs, vol. 51. Ithaca: ISAAA; 2015.

    Google Scholar 

  • Jiménez-Juárez A, Muñoz-Garay C, Gómez I, Saab-Rincon G, Damian-Almazo JY, Gill SS, Soberón M, Bravo A. Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J Biol Chem. 2007;282:21222–9.

    Article  PubMed  Google Scholar 

  • Jurat Fuentes JL, Adang MJ. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Biochemistry. 2006;45:9688–95.

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning C, Liu C, Wu K, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One. 2011;6:e17606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koul B, Yadav R, Sanyal I, Amla DV. Comparative performance of modified full-length and truncated Bacillus thuringiensis-cry1Ac genes in transgenic tomato. Springerplus. 2015;4:203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwa MSG, de Maagd RA, Stiekema WJ, Vlak JM, Bosch D. Toxicity and binding properties of the Bacillus thuringiensis delta-endotoxin Cry1C to cultured insect cells. J Invertebr Pathol. 1998;71:121–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Zheng B, Hong H, Jiang C, Peng R, Peng J, Yu Z, Zheng J, Yang H. Characterization of cultured insect cells selected by Bacillus thuringiensis crystal toxins. In Vitro Cell Dev Biol Anim. 2004;40:312–7.

    Article  CAS  PubMed  Google Scholar 

  • Lorence A, Darszon A, Díaz C, Liévano A, Quintero R, Bravo A. Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membrane in suspension and in planar lipid bilayers. FEBS Lett. 1995;360:353–6.

    Google Scholar 

  • Martin FG, Wolfersberger MG. Bacillus thuringiensis delta-endotoxin and larval Manduca sexta midgut brush border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers. J Exp Biol. 1995;198:91–6.

    CAS  PubMed  Google Scholar 

  • Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberón M, Bravo A. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One. 2015;10:e0119544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morin S, Biggs RW, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ, Brown JK, Tabashnik BE. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A. 2003;100:5004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure. 2001;9:409–17.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Garay C, Rodríguez-Almazán C, Aguilar JN, Portugal L, Gómez I, Saab-Rincon G, Soberón M, Bravo A. Oligomerization of Cry11Aa from Bacillus thuringiensis has an important role in toxicity against Aedes aegypti. Appl Environ Microbiol. 2009;75:7548–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco S, Gomez I, Arenas I, Saab-Rincon G, Rodriguez-Almazan C, Gill SS, Bravo A, Soberón M. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping-pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem. 2009;284:32750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal 3-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev. 2013;37:3–22.

    Article  PubMed  Google Scholar 

  • Peyronnet O, Vachon V, Schwartz JL, Laprade R. Ion Channels in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane. J Membr Biol. 2001;184:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev. 2007;71:255–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaim M, Zilberman D. Yield effects of genetically modified crops in developing countries. Science. 2003;299:900–2.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawai N, Malhotra P, Bhatnagar RK. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem. 2002;277:46849–51.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Almazán C, Zavala LE, Muñoz-Garay C, Jiménez-Juárez N, Pacheco S, Masson L, Soberón M, Bravo A. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. PLoS One. 2009;4:e5545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Bacillus thuringiensis: a century of research development and commercial applications. Plant Biotechnol J. 2011;9:283–300.

    Article  CAS  PubMed  Google Scholar 

  • Sangadala S, Walters FS, English LH, Adang MJ. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal Cry1Ac toxin binding and86Rb+-K+ efflux in vitro. J Biol Chem. 1994;269:10088–92.

    CAS  PubMed  Google Scholar 

  • Schwartz JL, Lu YJ, Söhnlein P, Brousseau R, Laprade R, Masson L, Adang MJ. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett. 1997;412:270–6.

    Article  CAS  PubMed  Google Scholar 

  • Siqueira HH, Nickerson KW, Moellenbeck D, Siegfried BD. Activity of gut proteinases from Cry1Ab-selected colonies of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci. 2004;60:1189–96.

    Article  CAS  PubMed  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik B, Bravo A. Engineering modified Bt toxins to counter insect resistance. Sciences. 2007;318:1640–2.

    Article  Google Scholar 

  • Soberón M, Gill SS, Bravo A. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci. 2009;66:1337–49.

    Article  PubMed  Google Scholar 

  • Tabashnik BE, Huang F, Ghimire MN, Leonard BR, Siegfried BD, Randasamy M, Yang Y, Wu Y, Gahan L, Heckel DG, Bravo A, Soberón M. Efficacy of genetically modified Bt toxins against insects with different mechanism of resistance. Nat Biotechnol. 2011;29:1128–31.

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31(6):510–21.

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Zhang M, Fabrick JA, Wu Y, Gao M, Huang F, Wei J, Zhang J, Yelich A, Unnithan GC, Bravo A, Soberón M, Carrière Y, Li X. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Sci Rep. 2015;5:15107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tay WT, Mahon RJ, Heckel DG, Walsh TK, Downes S, James WJ, Lee S-F, Reineke A, Williams AK, Gordon KHJ. Insect resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein. PLoS Genet. 2015;11:e1005534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vachon V, Prefontaine G, Coux F, Rang C, Marceau L, Masson L, Brousseau R, Frutos R, Schwartz JL, Laprade R. Role of helix 3 in pore formation by Bacillus thuringiensis insecticidal toxin Cry1Aa. Biochemistry. 2002;41:6178–84.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Zhang T, Liu C, Heckel DG, Li X, Tabashnik BE, Wu K. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci Rep. 2014;4:6184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yu L, Wu Y. Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol. 2005;71:948–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YH, Yang YJ, Gao WY, Guo JJ, Wu YH, Wu YD. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bull Entomol Res. 2009;99:175–81.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Luttrell R, Huang F. Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with Cry1Ab resistance in sugarcane borer Diatraea saccharalis. PLoS One. 2011;6:e25783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla Jr LA. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A. 2006;103:9897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cheng H, Gao Y, Wang G, Liang G, Wu K. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol. 2009;39:421–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Soberón, M., Monnerat, R., Bravo, A. (2016). Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. In: Gopalakrishnakone, P., Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics