Skip to main content

Bacterial Genotoxins as the Interphase Between DNA Damage and Immune Response

  • Living reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

  • 264 Accesses

Abstract

Bacterial genotoxins are a class of molecules that have the ability to enter the nucleus of a host cell and cause DNA damage by introducing single- and double-strand DNA breaks, leading to various effects, including activation of DNA damage response, senescence, apoptosis, and genetic aberrations. There is emerging evidence for an intricate connection between the DNA damage response and immunity, and it is becoming increasingly clear that bacterial genotoxins can act as potent immunomodulatory factors, which bacteria use in order to tailor the host immune response. This chapter will review some of the basic structural and functional characteristics of bacterial genotoxins and the internalization pathway used to reach the host DNA within the nuclear compartment. Special focus will be given to the connection between the genotoxin-induced DNA damage response and modulation of the host immune responses. Since it is not entirely clear what is the evolutionary advantage for bacteria that express these effectors, the possibility that they might play a role in influencing host immune response in order to promote stealth invasion and establishment of persistent infections will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad I, Simanyi E, Guroji P, Tamimi IA, delaRosa HJ, Nagar A, Nagar P, Katiyar SK, Elmets CA, Yusuf N. Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism. J Invest Dermatol. 2014;134:1710–7.

    Article  CAS  PubMed  Google Scholar 

  • Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur JC, Gharaibeh RZ, Muhlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, Fodor AA, Jobin C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance. J Cell Sci. 2015;128:4255–62.

    Article  CAS  PubMed  Google Scholar 

  • Balskus EP. Colibactin: understanding an elusive gut bacterial genotoxin. Nat Prod Rep. 2015;32:1534–40.

    Article  CAS  PubMed  Google Scholar 

  • Bekker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair. 2010;9:1219–28.

    Article  CAS  PubMed  Google Scholar 

  • Belibasakis GN, Bostanci N. Inflammatory and bone remodeling responses to the cytolethal distending toxins. Cells. 2014;3:236–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, Martinez L, Greidinger EL, Yu BD, Gallo RL. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med. 2012;18:1286–90.

    Article  CAS  PubMed  Google Scholar 

  • Bezine E, Vignard J, Mirey G. The cytolethal distending toxin effects on mammalian cells: a DNA damage perspective. Cells. 2014;3:592–615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blazkova H, Krejcikova K, Moudry P, Frisan T, Hodny Z, Bartek J. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling. J Cell Mol Med. 2010;14:357–67.

    Article  CAS  PubMed  Google Scholar 

  • Boesze-Battaglia K, Besack D, McKay T, Zekavat A, Otis L, Jordan-Sciutto K, Shenker BJ. Cholesterol-rich membrane microdomains mediate cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal-distending toxin. Cell Microbiol. 2006;8:823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa-associated E coli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 2013;8, e56964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldecott KW. DNA single-strand break repair. Exp Cell Res. 2014;329:2–8.

    Article  CAS  PubMed  Google Scholar 

  • Cejka P. DNA end resection: nucleases team up with the right partners to initiate homologous recombination. J Biol Chem. 2015;290:22931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes-Bratti X, Chaves-Olarte E, Lagergard T, Thelestam M. Cellular internalization of cytolethal distending toxin from Haemophilus ducreyi. Infect Immun. 2000;68:6903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes-Bratti X, Karlsson C, Lagergard T, Thelestam M, Frisan T. The Haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways. J Biol Chem. 2001;276:5296–302.

    Article  CAS  PubMed  Google Scholar 

  • Croxford JL, Tang ML, Pan MF, Huang CW, Kamran N, Phua CM, Chng WJ, Ng SB, Raulet DH, Gasser S. ATM-dependent spontaneous regression of early Emu-myc-induced murine B-cell leukemia depends on natural killer and T cells. Blood. 2013;121:2512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damek-Poprawa M, Jang JY, Volgina A, Korostoff J, DiRienzo JM. Localization of Aggregatibacter actinomycetemcomitans cytolethal distending toxin subunits during intoxication of live cells. Infect Immun. 2012;80:2761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Bel Belluz L, Guidi R, Levi L, Pateras IS, Levi L, Mihaljevic B, Rouf SF, Wrande M, Candela M, Turroni S, et al. The typhoid toxin promotes host survival and the establishment of a chronic asymptomatic infection. PLoS Pathog. 2016;12:e1005528.

    Article  PubMed  PubMed Central  Google Scholar 

  • DiRienzo JM. Uptake and processing of the cytolethal distending toxin by mammalian cells. Toxins (Basel). 2014;6:3098–116.

    Article  CAS  Google Scholar 

  • do Vale A, Cabanes D, Sousa S. Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol. 2016;7:42.

    PubMed  PubMed Central  Google Scholar 

  • Dobrindt U, Tjaden S, Shah S, Hacker J. Mobile genetic elements and pathogenicity islands encoding bacterial toxins. In: Alouf J, Ladant D, Popoff MR, editors. The comprehensive sourcebook of bacterial protein toxins. Boston: Elsevier; 2015. p. 40–76.

    Chapter  Google Scholar 

  • Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol. 2000;37:952–63.

    Article  CAS  PubMed  Google Scholar 

  • Escalas N, Davezac N, De Rycke J, Baldin V, Mazars R, Ducommun B. Study of the cytolethal distending toxin-induced cell cycle arrest in HeLa cells: involvement of the CDC25 phosphatase. Exp Cell Res. 2000;257:206–12.

    Article  CAS  PubMed  Google Scholar 

  • Eshraghi A, Dixon SD, Tamilselvam B, Kim EJ, Gargi A, Kulik JC, Damoiseaux R, Blanke SR, Bradley KA. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry. PLoS Pathog. 2014;10, e1004295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox JG, Rogers AB, Whary MT, Ge Z, Taylor NS, Xu S, Horwitz BH, Erdman SE. Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Camplyobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect Immun. 2004;72:1116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisan T. Bacterial genotoxins: the long journey to the nucleus of mammalian cells. Biochim Biophys Acta. 2016;1858:567–75.

    Article  CAS  PubMed  Google Scholar 

  • Gargi A, Reno M, Blanke SR. Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally? Front Cell Infect Microbiol. 2012;2:124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargi A, Tamilselvam B, Powers B, Prouty MG, Lincecum T, Eshraghi A, Maldonado-Arocho FJ, Wilson BA, Bradley KA, Blanke SR. Cellular interactions of the cytolethal distending toxins from Escherichia coli and Haemophilus ducreyi. J Biol Chem. 2013;288:7492–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436:1186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Feng Y, Whary MT, Nambiar PR, Xu S, Ng V, Taylor NS, Fox JG. Cytolethal distending toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice. Infect Immun. 2005;73:3559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Rogers AB, Feng Y, Lee A, Xu S, Taylor NS, Fox JG. Bacterial cytolethal distending toxin promotes the development of dysplasia in a model of microbially induced hepatocarcinogenesis. Cell Microbiol. 2007;9:2070–80.

    Article  CAS  PubMed  Google Scholar 

  • Gelfanova V, Hansen EJ, Spinola SM. Cytolethal distending toxin of Haemophilus ducreyi induces apoptotic death of Jurkat T cells. Infect Immun. 1999;67:6394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Zacharatos P, Kotsinas A, Kletsas D, Mariatos G, Zoumpourlis V, Ryan KM, Kittas C, Papavassiliou AG. p53 activates ICAM-1 (CD54) expression in an NF-kappaB-independent manner. EMBO J. 2003;22:1567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasso F, Frisan T. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules. 2015;5:1762–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra L, Teter K, Lilley BN, Stenerlow B, Holmes RK, Ploegh HL, Sandvig K, Thelestam M, Frisan T. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell Microbiol. 2005;7:921–34.

    Article  CAS  PubMed  Google Scholar 

  • Guerra L, Carr HS, Richter-Dahlfors A, Masucci MG, Thelestam M, Frost JA, Frisan T. A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS One. 2008;3, e2254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra L, Cortes-Bratti X, Guidi R, Frisan T. The biology of the cytolethal distending toxins. Toxins (Basel). 2011a;3:172–90.

    Article  CAS  Google Scholar 

  • Guerra L, Guidi R, Frisan T. Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J. 2011b;278:4577–88.

    Article  CAS  PubMed  Google Scholar 

  • Guerra L, Guidi R, Slot I, Callegari S, Sompallae R, Pickett CL, Astrom S, Eisele F, Wolf D, Sjogren C, et al. Bacterial genotoxin triggers FEN1-dependent RhoA activation, cytoskeleton remodeling and cell survival. J Cell Sci. 2011c;124:2735–42.

    Article  CAS  PubMed  Google Scholar 

  • Guidi R, Guerra L, Levi L, Stenerlow B, Fox JG, Josenhans C, Masucci MG, Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol. 2013;15:98–113.

    Article  CAS  PubMed  Google Scholar 

  • Haghjoo E, Galan JE. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A. 2004;101:4614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassane DC, Lee RB, Pickett CL. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect Immun. 2003;71:541–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey TE, Majam G, Guerry P. Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect Immun. 2005;73:5194–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homburg S, Oswald E, Hacker J, Dobrindt U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett. 2007;275:255–62.

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med. 2013;3:a013573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V, Thelestam M, Frisan T. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol. 2002;4:87–99.

    Article  CAS  PubMed  Google Scholar 

  • Liyanage NP, Manthey KC, Dassanayake RP, Kuszynski CA, Oakley GG, Duhamel GE. Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter. 2010;15:98–107.

    Article  CAS  PubMed  Google Scholar 

  • Marcq I, Martin P, Payros D, Cuevas-Ramos G, Boury M, Watrin C, Nougayrede JP, Olier M, Oswald E. The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli. J Infect Dis. 2014;210:285–94.

    Article  CAS  PubMed  Google Scholar 

  • Matzinger P. Essay 1: the danger model in its historical context. Scand J Immunol. 2001;54:4–9.

    Article  CAS  PubMed  Google Scholar 

  • McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, Florin TH, Hill GR, Korolik V, McGuckin MA. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest. 2007;117:2313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCool KW, Miyamoto S. DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246:311–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • McSweeney LA, Dreyfus LA. Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit. Cell Microbiol. 2004;6:447–58.

    Article  CAS  PubMed  Google Scholar 

  • Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol. 2016;37–38:51–64.

    Article  PubMed  Google Scholar 

  • Monack DM. Helicobacter and salmonella persistent infection strategies. Cold Spring Harb Perspect Med. 2013;3:a010348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesic D, Hsu Y, Stebbins CE. Assembly and function of a bacterial genotoxin. Nature. 2004;429:429–33.

    Article  CAS  PubMed  Google Scholar 

  • Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313:848–51.

    Article  CAS  PubMed  Google Scholar 

  • Ohara M, Hayashi T, Kusunoki Y, Miyauchi M, Takata T, Sugai M. Caspase-2 and caspase-7 are involved in cytolethal distending toxin-induced apoptosis in Jurkat and MOLT-4 T-cell lines. Infect Immun. 2004;72:871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohguchi M, Ishisaki A, Okahashi N, Koide M, Koseki T, Yamato K, Noguchi T, Nishihara T. Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis. Infect Immun. 1998;66:5980–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olier M, Marcq I, Salvador-Cartier C, Secher T, Dobrindt U, Boury M, Bacquie V, Penary M, Gaultier E, Nougayrede JP, et al. Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes. 2012;3:501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pere-Vedrenne C, Cardinaud B, Varon C, Mocan I, Buissonniere A, Izotte J, Megraud F, Menard A. The cytolethal distending toxin subunit CdtB of Helicobacter induces a Th17-related and antimicrobial signature in intestinal and hepatic cells in vitro. J Infect Dis. 2016;213:1979–89.

    Article  PubMed  Google Scholar 

  • Pratt JS, Sachen KL, Wood HD, Eaton KA, Young VB. Modulation of host immune responses by the cytolethal distending toxin of Helicobacter hepaticus. Infect Immun. 2006;74:4496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, Knight P, Codling C, Marchesi JR, Winstanley C, et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 2014;63:761–70.

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Rottach A, Lotz-Havla AS, Laux V, Muschaweckh A, Gersting SW, Muntau AC, Hopfner KP, Jin L, Vanness K, et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat Immunol. 2014;15:538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 2012;24:835–45.

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti PJ. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 2011;4:8–14.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Koseki T, Yamato K, Saiki K, Konishi K, Yoshikawa M, Ishikawa I, Nishihara T. p53-independent expression of p21(CIP1/WAF1) in plasmacytic cells during G(2) cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin. Infect Immun. 2002;70:528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secher T, Samba-Louaka A, Oswald E, Nougayrede JP. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One. 2013;8, e77157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Feng Y, Rogers AB, Rickman B, Whary MT, Xu S, Clapp KM, Boutin SR, Fox JG. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect Immun. 2009;77:2508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenker BJ, McKay T, Datar S, Miller M, Chowhan R, Demuth D. Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. J Immunol. 1999;162:4773–80.

    CAS  PubMed  Google Scholar 

  • Shenker BJ, Hoffmaster RH, Zekavat A, Yamaguchi N, Lally ET, Demuth DR. Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle. J Immunol. 2001;167:435–41.

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Ojcius DM, Walker LP, Zekavat A, Scuron MD, Boesze-Battaglia K. Aggregatibacter actinomycetemcomitans cytolethal distending toxin activates the NLRP3 inflammasome in human macrophages, leading to the release of proinflammatory cytokines. Infect Immun. 2015;83:1487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenker BJ, Boesze-Battaglia K, Scuron MD, Walker LP, Zekavat A, Dlakic M. The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cell Microbiol. 2016;18:223–43.

    Article  CAS  PubMed  Google Scholar 

  • Song J, Gao X, Galan JE. Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature. 2013;499:350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young VB, Knox KA, Pratt JS, Cortez JS, Mansfield LS, Rogers AB, Fox JG, Schauer DB. In vitro and in vivo characterization of Helicobacter hepaticus cytolethal distending toxin mutants. Infect Immun. 2004;72:2521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Océane C. B. Martin , Teresa Frisan or Boris Mihaljevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Martin, O.C.B., Frisan, T., Mihaljevic, B. (2016). Bacterial Genotoxins as the Interphase Between DNA Damage and Immune Response. In: Gopalakrishnakone, P., Stiles, B., Alape-GirĂłn, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6725-6_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6725-6

  • Online ISBN: 978-94-007-6725-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics