Skip to main content

Force Modulation in Atomic Force Microscopy

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 695 Accesses

Definition

Force modulation in atomic force microscopy is a technique to measure tip–surface interactions which in turn are determined by local elastic restoring forces, by local frictional forces, and by local adhesion between a tip and the surface under inspection. The tip or sample is oscillated at a given frequency and pushed into the repulsive regime. Data on local forces can be acquired along with topography, which allows comparison of both height and material properties.

Overview

In atomic force microscopy (AFM), a micro-fabricated elastic beam with a sensor tip at its end is scanned over the sample surface and generates high-resolution images of surfaces. Dynamic modes, where the cantilever or the sample surface is vibrated, belong to the standard equipment of most commercial instruments. With a variety of these techniques, such as force modulation microscopy, scanning local-acceleration microscopy, scanning microdeformation microscopy, or pulsed force microscopy, images can be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zinin, P., Arnold, W., Weise, W., Berezina, S.: Theory and applications of scanning acoustic microscopy and scanning near-field acoustical imaging. In: Kundu, T. (ed.) Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2012), and references contained therein

    Google Scholar 

  2. Maivald, P., Butt, H.-J., Gould, S.A.C., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., Hansma, P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103–106 (1991)

    Article  Google Scholar 

  3. Radmacher, M., Tilmann, R.W., Gaub, H.E.: Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735–742 (1993)

    Article  Google Scholar 

  4. Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.-J., Oulevey, F.: Materials properties measurements: choosing the optimal scanning probe microscope configuration. J. Vac. Sci. Technol. B14, 1308–1312 (1996)

    Article  Google Scholar 

  5. Syed Asif, S.A., Wahl, K.J., Colton, R.J., Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192–1200 (2001), and references contained therein

    Article  Google Scholar 

  6. Krotil, H.-U., Stifter, T., Marti, O.: Concurrent measurement of adhesive and elastic surface properties with a new modulation technique for scanning force microscopy. Rev. Sci. Instrum. 71, 2765–2771 (2000)

    Article  Google Scholar 

  7. Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic-force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Article  Google Scholar 

  8. Kopycinska-Müller, M., Caron, A., Hirsekorn, S., Rabe, U., Natter, N., Hempelmann, R., Birringer, R., Arnold, W.: Quantitative evaluation of elastic properties of nano-crystalline nickel using atomic force acoustic microscopy. Z. Phys. Chem. 222, 471–498 (2008), and references contained therein

    Article  Google Scholar 

  9. Yamanaka, K., Kobari, K., Tsuji, T.: Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements. Jpn. J. Appl. Phys. 47, 6070–6076 (2008), and references contained therein

    Article  Google Scholar 

  10. Kumar, A., Rabe, U., Hirsekorn, S., Arnold, W.: Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy. Appl. Phys. Lett. 92, 183106 (2008)

    Article  Google Scholar 

  11. Rabe, U.: Atomic force acoustic microscopy. In: Bushan, B., Fuchs, H. (eds.) Applied Scanning Probe Methods, vol. 2, pp. 37–90. Springer, Berlin (2006), and references contained therein

    Chapter  Google Scholar 

  12. Turner, J.A., Hurley, D.C.: Ultrasonic methods in contact atomic force microscopy. In: Placko, D., Kundu, T. (eds.) Ultrasonic Methods for Material Characterization. Instrumentation, Mésure, Métrologie, vol. 3, pp. 117–148. Lavoisier, Cachan (2003), and references contained therein

    Google Scholar 

  13. Stan, G., Cook, R.F.: Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nanotechnology 19, 235701 (2008)

    Article  Google Scholar 

  14. Huya, P.A., Hurley, C.D., Turner, J.A.: Contact-resonance atomic force microscopy for viscoelasticity. J. Appl. Phys. 104, 074916 (2008)

    Article  Google Scholar 

  15. Caron, A., Arnold, W.: Observation of local internal friction and plasticity onset in nanocrystalline nickel by atomic force acoustic microscopy. Acta Mater. 57, 4353–4363 (2009)

    Article  Google Scholar 

  16. Scherer, V., Reinstädtler, M., Arnold, W.: Atomic force microscopy with lateral modulation. In: Fuchs, H., Bhushan, B., Hosaka, S. (eds.) Applied Scanning Probe Methods, pp. 75–150. Springer, Berlin (2003), and references contained therein

    Google Scholar 

  17. Killgore, J.P., Yablon, D.G., Tsou, A.H., Gannepalli, A., Turner, J.R., Proksch, R., Hurley, D.C.: Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27, 13983 (2011)

    Article  Google Scholar 

  18. Wagner, H., Büchsenschütz-Göbeler, M., Luo, Y., Kumar, A., Arnold, W., Samwer, K.: Measurement of local internal friction in metallic glasses. J. Appl. Phys. 115, 134307 (2014); Erratum: J. Appl. Phys. 115, 134307 (2014)

    Article  Google Scholar 

  19. Mazeran, P.E., Loubet, J.L.: Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribol. Lett. 7, 199–212 (1999)

    Article  Google Scholar 

  20. Vlassak, J.J., Nix, W.D.: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A67, 1045–1056 (1993)

    Article  Google Scholar 

  21. Stan, G., Price, W.: Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method. Rev. Sci. Instrum. 77, 103707 (2006)

    Article  Google Scholar 

  22. Wagner, H., Bedorf, D., Küchemann, S., Schwabe, M., Zhang, B., Arnold, W., Samwer, K.: Local elastic properties of a metallic glass. Nat. Mater. 10(6), 1–4 (2012). doi:10.1038/nmat3024

    Google Scholar 

  23. Yamanaka, K., Ogiso, H., Kolosov, O.: Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)

    Article  Google Scholar 

  24. Muraoka, M., Arnold, W.: A method to evaluate local elasticity and adhesion energy based on nonlinear response of AFM cantilever vibration. JSME Int. J. A44, 396–405 (2001)

    Article  Google Scholar 

  25. Vairac, P., Boucenna, R., Le Rouzic, J., Cretin, B.: Scanning microdeformation microscopy: experimental investigations on non-linear contact spectroscopy. J. Phys. D Appl. Phys. 41, 155503 (2008), and references contained therein

    Article  Google Scholar 

  26. Cuberes, M.T.: Nanoscale friction and ultrasound. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear, pp. 49–71. Springer, Berlin (2007), and references contained therein

    Chapter  Google Scholar 

  27. Yaralioglu, G.G., Degertekin, F.L., Crozier, K.B., Quate, C.F.: Contact stiffness of layered materials for ultrasonic force microscopy. J. Appl. Phys. 87, 7491–7496 (2000)

    Article  Google Scholar 

  28. Hurley, D.C., Kopycinska-Müller, M., Langlois, E.D., Kos, A.B.., Barbosa III, N.: Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl. Phys. Lett. 89, 021911 (2006)

    Article  Google Scholar 

  29. Striegler, A., Koehler, B., Bendjus, B., Roellig, M., Kopycinska-Mueller, M., Meyendorf, N.: Detection of buried reference structures by use of atomic force acoustic microscopy. Ultramicroscopy 111, 1405–1416 (2011)

    Article  Google Scholar 

  30. Shekhawat, G.S., Dravid, V.P.: Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005)

    Article  Google Scholar 

  31. Hu, S., Su, C., Arnold, W.: Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies. J. Appl. Phys. 109, 084324 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Arnold, W. (2015). Force Modulation in Atomic Force Microscopy. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_36-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_36-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics