Skip to main content

Dielectrophoresis of Nucleic Acids

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 404 Accesses

Synonyms

Translational movement of polynucleotides in a nonuniform electric field

Definitions

  1. 1.

    Dielectrophoresis (DEP) is the translational motion of an electrically polarizable body by the action of an externally applied, spatially nonuniform, electric field. DEP can occur with an electrically neutral body in a spatially nonuniform field and depends on the dielectric properties of the body relative to the surrounding medium. The word dielectrophoresis derives from the Greek word “phorein” where a particle “is carried as a result of its dielectric properties” [1]. DEP is distinguished from electrophoresis that requires a net charge on the body for Coulombic movement to occur in an externally applied, spatially uniform, electric field. DEP is also distinguished from electrorotation (EROT) that refers to rotational motion of a body in a spatially inhomogeneous electric field.

  2. 2.

    Nucleic acids(NAs) are responsible for information storage, distribution, translation, and control...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pethig, R.: Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2), 35 (2010)

    Google Scholar 

  2. Dahm, R.: Discovering DNA: friedrich miescher and the early years of nucleic acid research. Hum. Genet. 122(6), 565–581 (2008)

    Article  Google Scholar 

  3. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 6th edn. WH Freeman, New York (2013)

    Google Scholar 

  4. Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  5. Lapizco-Encinas, B.H., Rito-Palomares, M.: Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28(24), 4521–4538 (2007)

    Article  Google Scholar 

  6. Hölzel, R.: Dielectric and dielectrophoretic properties of DNA. IET Nanobiotechnol. 3(2), 28–45 (2009)

    Article  Google Scholar 

  7. Calladine, C.R., et al.: Understanding DNA – The Molecule and How it Works, 3rd edn. Academic, London (2004)

    Google Scholar 

  8. Bloomfield, V.A., Crothers, D.M., Tinoco Jr., I.: Nucleic acids: Structures, Properties, and Functions. University Science, Sausalito (2000)

    Google Scholar 

  9. Giraud, G., et al.: Dielectrophoretic manipulation of ribosomal RNA. Biomicrofluidics 5, 24116 (2011)

    Article  Google Scholar 

  10. Takashima, S.: Electrical Properties of Biopolymers and Membranes. Adam Hilger, Philadelphia (1989)

    Google Scholar 

  11. Grant, E.H., Sheppard, R.J., South, G.P.: Dielectric behaviour of biological molecules in solution. In: Harrington, W.F., Peacocke, A.R. (eds.) Monographs on Physical Biochemistry. OUP, Clarendon Press, Oxford (1978)

    Google Scholar 

  12. Pethig, R.: Dielectric and Electronic Properties of Biological Materials. Wiley, New York (1979)

    Google Scholar 

  13. Morgan, H., Green, N.G.: AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press/IoP Publishing, Baldock/Philadelphia (2003)

    Google Scholar 

  14. Bakewell, D.J., Morgan, H.: Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes (vol 5, pg 1, 2006). IEEE Trans. Nanobioscience 5(2), 139–146 (2006)

    Article  Google Scholar 

  15. Henning, A., Bier, F.F., Hölzel, R.: Dielectrophoresis of DNA: quantification by impedance measurements. Biomicrofluidics 4(2), 9 (2010)

    Article  Google Scholar 

  16. Zhang, C., et al.: Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1), 401–420 (2010)

    Article  Google Scholar 

  17. Viefhues, M., Regtmeier, J., Anselmetti, D.: Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst 138(1), 186–196 (2013)

    Article  Google Scholar 

  18. Kayani, A.A., et al.: Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics 6(3), 32 (2012)

    Article  Google Scholar 

  19. Sonnenberg, A., et al.: Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma. Electrophoresis 35(12–13), 1828–1836 (2014)

    Article  Google Scholar 

  20. Nawarathna, D., et al.: Targeted messenger RNA profiling of transfected breast cancer gene in a living cell. Anal. Biochem. 408(2), 342–344 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Bakewell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bakewell, D.J. (2015). Dielectrophoresis of Nucleic Acids. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_132-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_132-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics