Skip to main content

AFM in Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 570 Accesses

Synonyms

Atomic force microscopy in liquids; Scanning force microscopy in liquids

Definition

Atomic force microscopy (AFM) in liquids is the application of AFM in liquid environment, i.e., in which both the surface under investigation and the scanning probe are immersed in liquid.

Overview and Definitions

AFM is a microscopy technique that can provide three-dimensional images of virtually any surface at nanometer-scale resolution. It relies on the force between a sharp probe and the surface, which is detected while scanning the probe over the sample. Unlike many other microscopy techniques at such a resolution, it can readily be applied in liquid environment.

An atomic force microscope consists of a sharp probe (“tip”) mounted on a microfabricated cantilever beam and a mechanism (“scanner”) to scan the tip over the surface at subnanometer resolution [1], see Fig. 1. Typically, an optical detection scheme is used to detect the deflection of the cantilever. Via the spring constant of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sarid, D.: Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces, 2nd edn. Oxford University Press, Oxford (1994)

    Google Scholar 

  2. Garcia, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Article  Google Scholar 

  3. Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  Google Scholar 

  4. Dufrêne, Y.F., Martínez-Martín, D., Medalsy, I., Alsteens, D., Müller, D.J.: Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat. Methods 10, 847–854 (2013)

    Article  Google Scholar 

  5. Butt, H.-J.: Electrostatic interaction in atomic force microscopy. Biophys. J. 60, 777–785 (1991)

    Article  Google Scholar 

  6. Israelachvili, J.N.: Intramolecular and Surface Forces, 3rd edn. Academic, Oxford (2011)

    Google Scholar 

  7. Ohnesorge, F., Binnig, G.: True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456 (1993)

    Article  Google Scholar 

  8. Sader, J.E., Jarvis, S.P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004)

    Article  Google Scholar 

  9. Bhushan, B., Fuchs, H., Hosaka, S. (eds.): Applied Scanning Probe Methods, vol. I. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  10. Morris, V.J., Gunnig, A.P., Kirby, A.R.: Atomic Force Microscopy for Biologists. World Scientific, River Edge (1999)

    Book  Google Scholar 

  11. Hoogenboom, B.W., Frederix, P.L.T.M., Yang, J.L., Martin, S., Pellmont, Y., Steinacher, M., Zäch, S., Langenbach, E., Heimbeck, H.-J., Engel, A., Hug, H.J.: A Fabry-Perot interferometer for micrometer-sized cantilevers. Appl. Phys. Lett. 86, 074101 (2005)

    Article  Google Scholar 

  12. Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H.: Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 76, 053704 (2005)

    Article  Google Scholar 

  13. Khan, Z., Leung, C., Tahir, B., Hoogenboom, B.W.: Digitally tunable, wide-band amplitude, phase, and frequency detection for atomic-resolution scanning force microscopy. Rev. Sci. Instrum. 81, 073704 (2010)

    Article  Google Scholar 

  14. Hansma, H.G.: Surface biology of DNA by atomic force microscopy. Annu. Rev. Phys. Chem. 52, 71–92 (2001)

    Article  Google Scholar 

  15. Pyne, A., Thompson, R., Leung, C., Roy, D., Hoogenboom, B.W.: Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10, 3257–3261 (2014)

    Article  Google Scholar 

  16. Müller, D.J., Engel, A.: Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007)

    Article  Google Scholar 

  17. Müller, D.J., Dufrêne, Y.F.: Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 5, 261–269 (2008)

    Article  Google Scholar 

  18. Fisher, T.E., Marszalek, P.E., Fernandez, J.M.: Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7, 719–724 (2000)

    Article  Google Scholar 

  19. Hinterdorfer, P., Dufrêne, Y.F.: Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006)

    Article  Google Scholar 

  20. Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M., Ando, T.: High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. In: Walter, N.G. (ed.) Methods in Enzymology, vol. 475, pp. 541–564. Academic, Burlington (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart W. Hoogenboom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hoogenboom, B.W. (2015). AFM in Liquids. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_108-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_108-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics