Skip to main content

The Methanogenic Bacteria

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The methanogenic bacteria are a large and diverse group that is united by three features: (1) they are members of the domain Archaea, or archaebacteria (see Chap. 1), (2) they are strict anaerobes, and (3) they form large quantities of methane as the major product of their energy metabolism. The methanogenic bacteria are related to each other primarily by their mode of energy metabolism but are very diverse with respect to their other properties. Phylogenetically, the methanogens are members of the phylum Euryarchaota, in which they are classified into several classes, i.e., Methanobacteria, Methanococci and Methanomicrobia - each of which embraces several families and genera - as well as Methanopyri. A most updated phylogenetic tree based upon 16S rRNA gene sequences is provided in The All-Species Living Tree (Release LTPs115 from March 2014) (http://www.arb-silva.de/projects/living-tree/). The following text, focusing on metabolic properties, was originally published in The Prokaryotes, Third Edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahring BK, Westermann P (1984) Isolation and characterization of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol Lett 25:47–52

    CAS  Google Scholar 

  • Ahring BK, Westermann P (1985) Methanogenesis from acetate: physiology of a thermophilic acetate-utilizing methanogenic bacterium. FEMS Microbiol Lett 28:1519

    Google Scholar 

  • Aldrich HC, Beimborn DB, Schönheit P (1987) Creation of artifactual internal membranes during fixation of Methanobacterium thermoautotrophicum. Can J Microbiol 33:844–849

    CAS  Google Scholar 

  • Aldrich HC, Robinson RW, Williams DS (1986) Ultrastructure of Methanosarcina mazei. Syst Appl Microbiol 7:314–319

    Google Scholar 

  • Allmansberger R, Bokranz M, Kröckel L, Schallenberg J, Klein A (1989) Conserved gene structures and expression signals in methanogenic archaebacteria. Can J Microbiol 35:52–57

    CAS  PubMed  Google Scholar 

  • Allmansberger R, Knaub S, Klein A (1988) Conserved elements in the transcription initiation regions preceding highly expressed structural genes of methanogenic archaebacteria. Nucleic Acids Res 16:7419–7436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auer J, Spicker G, Böck A (1989) Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli “spectinomycin operon”: implications for the evolutionary relationships of 70S and 80S ribosomes. J Mol Biol 209:21–36

    CAS  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercapto ethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belay N, Johnson R, Rajagopal BS, Conway de Macario E, Daniels L (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54:600–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belyaev SS, Ya A, Obraztsova KS, Laurinavichus LV, Belyaev SS, Ya A, Ya A, Ya Obraztsova A, Laurinavichus KS, Bezrukova LV (1986) Characteristics of rod-shaped methane-producing bacteria from an oil pool and description of Methanobacterium ivanovii sp. nov. Mikrobiologiya (Engl Trans) 55:821–826

    Google Scholar 

  • Belyaev SS, Wolkin R, Kenealy WR, DeNiro MJ, Epstein S, Zeikus JG (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45:691–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berghofer B, Kröckel L, Körtner C, Truss M, Schallenberg J, Klein A (1988) Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents. Nucleic Acids Res 16:81138128

    Google Scholar 

  • Berry DF, Francis AJ, Bollag J-M (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beveridge TJ, Harris BJ, Sprott GD (1987) Septation and filament splitting in Methanospirillum hungatei. Can J Microbiol 33:725–732

    Google Scholar 

  • Beveridge TJ, Patel GB, Harris BJ, Sprott GD (1986) The ultrastructure of Methanothrix concilii, a mesophilic aceticlastic methanogen. Can J Microbiol 32:703–710

    Google Scholar 

  • Bhatnagar L, Jain MK, Aubert J-P, Zeikus JG (1984) Comparison of assimilatory organic nitrogen, sulfur, and carbon sources for growth of Methanobacterium species. Appl Environ Microbiol 48:785–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54:768–771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaut M, Gottschalk G (1985) Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem Sci 10:486–489

    CAS  Google Scholar 

  • Bleicher K, Zellner G, Winter J (1989) Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol Lett 59:307–312

    CAS  Google Scholar 

  • Blotevogel K-H, Fischer U (1985) Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov. Arch Microbiol 142:218–222

    CAS  Google Scholar 

  • Blotevogel K-H, Fischer U (1989) Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int J Syst Bacteriol 39:91–92

    Google Scholar 

  • Blotevogel KH, Fischer U, Liipkes KH (1986) Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can J Microbiol 32:127–131

    CAS  Google Scholar 

  • Blotevogel K-H, Fisher U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotropic methanogen. Arch Microbiol 142:211–217

    CAS  Google Scholar 

  • Bobik TA, Wolfe RS (1988) Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Proc Natl Acad Sci USA 85:60–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bobik TA, Wolfe RS (1989) Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum. J Bacteriol 171:1423–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böck A, Kandler O (1985) Antibiotic sensitivity of archaebacteria. In: Woe se CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 525–544

    Google Scholar 

  • Bomar M, Knoll K, Widdel F (1985) Fixation of molecular nitrogen by Methanosarcina barkeri. FEMS Microbiol Ecol 31:47–55

    CAS  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boone DR, Mah R (1988) Transitional bacteria. In: Smith WH, Frank JR (eds) Methane from biomass: a systems approach. Elsevier, New York, pp 35–47

    Google Scholar 

  • Boone DR, Menaia JAGF, Boone JE, Mah RA (1987) Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl Environ Microbiol 53:83–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219

    Google Scholar 

  • Boone DR, Worakit S, Mathrani IM, Mah RA (1986) Alkaliphilic methanogens from high-pH lake sediments. Syst Appl Microbiol 7:230–234

    Google Scholar 

  • Bott M, Thauer RK (1989) Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem 179:469–472

    CAS  PubMed  Google Scholar 

  • Bouwer EJ, McCarty PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JW, Daniels CJ, Reeve JN (1989) Gene structure, organization, and expression in archaebacteria. CRC Crit Rev Microbiol 16:287–338

    CAS  Google Scholar 

  • Brusa T, Conca R, Ferrara A, Ferrari A, Pecchioni A (1987) Presence of methanobacteria in human subgingival plaque. J Clin Periodontol 14:470–471

    CAS  PubMed  Google Scholar 

  • Bryant MP, Boone DR (1987a) Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Int J Syst Bacteriol 37:169–170

    Google Scholar 

  • Bryant MP, Boone DR (1987b) Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37:171

    Google Scholar 

  • Bryant MP, Tzeng SF, Robinson IM, Joyner AE Jr (1971) Nutrient requirements of methanogenic bacteria. Adv Chem Ser 105:23–40

    CAS  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31

    CAS  PubMed  Google Scholar 

  • Chartrain M, Zeikus JG (1986a) Microbial ecophysiology of whey biomethanation: intermediary metabolism of lactose degradation in continuous culture. Appl Environ Microbiol 51:180–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chartrain M, Zeikus JG (1986b) Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture. Appl Environ Microbiol 51:188–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chumakov KM, Zhilina TN, Zvyaginntseva IS, Tarasov AL, Zavarzin GA (1987) 5S RNA in archaebacteria. Zh Obstchey Biol (Russ) 48:167–181

    CAS  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327

    CAS  Google Scholar 

  • Conway de Macario E, Wolin MJ, Macario AJL (1981) Immunology of achaebacteria that produce methane gas. Science 214:74–75

    CAS  PubMed  Google Scholar 

  • Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane-producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov. Arch Microbiol 134:28–32

    CAS  Google Scholar 

  • Daniels L (1984) Biological methanogenesis: physiological and practical aspects. Trends Biotechnol 2:91–98

    CAS  Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS, Weimer PS (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    CAS  PubMed  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dellinger CA, Ferry JG (1984) Effect of monensin on growth and methanogenesis of Methanobacterium formicicum. Appl Environ Microbiol 48:680–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeMoll E, Tsai L (1986) Utilization of purines or pyrimidines as the sole nitrogen source by Methanococcus vannielii. J Bacteriol 167:681–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis PP (1986) Molecular biology of archaebacteria. J Bacteriol 168:471–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153–175

    PubMed  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 172:669–677

    CAS  PubMed  Google Scholar 

  • Fatherpure BZ, Boyd SA (1988) Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol Lett 49:149–156

    Google Scholar 

  • Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24:465–469

    CAS  Google Scholar 

  • Ferry JG, Wolfe RS (1977) Nutritional and biochemical characterization of Methanospirillum hungatii. Appl Environ Microbiol 34:371–376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151:459–465

    CAS  Google Scholar 

  • Fox GE (1985) The structure and evolution of archaebacterial ribosomal RNA. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 257–310

    Google Scholar 

  • Friedmann HC, Thauer RK (1987) Non-enzymatic ammonia formation from glutamine under growth conditions for Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 40:179–182

    CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    CAS  Google Scholar 

  • Fuchs G, Stupperich E (1986) Carbon assimilation pathways in archaebacteria. Syst Appl Microbiol 7:364–369

    CAS  Google Scholar 

  • Godsy EM (1980) Isolation of Methanobacterium bryantii from a deep aquifer by using a novel broth-antibiotic disk method. Appl Environ Microbiol 39:1074–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunsalus RP, Wolfe RS (1978) ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum. J Bacteriol 135:851–7

    Google Scholar 

  • Harris JE (1985) GELRITE as an agar substitute for the cultivation of mesophilic Methanobacterium and Methanobrevibacter species. Appl Environ Microbiol 50:1107–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris JE (1987) Spontaneous disaggregation of Methanosarcina mazei S-6 and its use in the development of genetic techniques for Methanosarcina spp. Appl Environ Microbiol 53:2500–2504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris JE, Pinn PA, Davis RP (1984) Isolation and characterization of a novel thermophilic, freshwater methanogen. Appl Environ Microbiol 48:1123–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatchikian EC, Fardeau ML, Bruschi M, Belaich JP, Chapman A, Cammack R (1989) Isolation, characterization, and biological activity of the ferredoxin. J Bacteriol 171:2384–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermann M, Noll KM, Wolfe RS (1986) Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl Environ Microbiol 51:1124–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilpert R, Winter J, Hammes W, Kandler O (1981) The sensitivity of archaebacteria to antibiotics. Zentrabl Bakteriol Mikrobiol Hyg 1(C2):11–20

    Google Scholar 

  • Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms. Academic, London, pp 69–81

    Google Scholar 

  • Hobson PN, Bousfield S, Summers R (1981) Methane production from agricultural and domestic wastes. Applied Science Publishers, London

    Google Scholar 

  • Huber H, Thomm M, König H, Thies G, Stetter KO (1982) A novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York, pp 117–132

    Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    CAS  Google Scholar 

  • Jain MK, Thompson TE, Conway de Macario E, Zeikus JG (1987) Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov. Syst Appl Microbiol 9:77–82

    CAS  Google Scholar 

  • Jarrell KF, Koval SF (1989) Ultrastructure and biochemistry of Methanococcus voltae. CRC Crit Rev Microbiol 17:53–87

    CAS  Google Scholar 

  • Jones WJ, Nagel DP Jr, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Jones WJ, Paynter MJB, Gupta R (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97

    Google Scholar 

  • Jones WJ, Stugard CE, Jannasch HW (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–319

    CAS  Google Scholar 

  • Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983c) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalmokoff ML, Jarrell KF, Koval SF (1988) Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114. J Bacteriol 170:1752–1758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 413–457

    Google Scholar 

  • Kandler O, Zillig W (eds) (1986) Archaebacteria’85. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Keltjens JT, van der Drift C (1986) Electron transfer reactions in methanogens. FEMS Microbiol Rev 39:259–303

    CAS  Google Scholar 

  • Kenealy WR, Thompson TE, Schubert KR, Zeikus JG (1982) Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum. J Bacteriol 150:1357–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kengen SWM, Mosterd JJ, Nelissen RLH, Keltjens JT, van der Drift C, Vogels GD (1988) Reductive activation of the methyl-tetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum strain AH. Arch Microbiol 150:405–412

    CAS  Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52:1037–1045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 4:305312

    Google Scholar 

  • Klimczak LJ, Grummt F, Burger KJ (1986) Purification and characterization of DNA polymerase from the archaebacterium Methanobacterium thermoautotrophicum. Biochemistry 25:4850–4855

    CAS  Google Scholar 

  • Kneifel H, Stetter KO, Andreesen JR, Wiegel J, Konig H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245

    CAS  Google Scholar 

  • Knoll G, Winter J (1989) Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl Microbiol Biotechnol 30:318–324

    CAS  Google Scholar 

  • Koga Y, Ohga M, Nishihara M, Morii H (1987) Distribution of a diphytanyl ether analog of phosphatidylserine and an ethanolamine-containing tetraether lipid in methanogenic bacteria. Syst Appl Microbiol 9:176–182

    CAS  Google Scholar 

  • König H (1984) Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481

    Google Scholar 

  • König H (1988) Archaebacterial cell envelopes. Can J Microbiol 34:395–406

    Google Scholar 

  • König H, Nusser E, Stetter KO (1985) Glycogen in Methanolobus and Methanococcus. FEMS Microbiol Lett 28:265–269

    Google Scholar 

  • König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1(C3):478–490

    Google Scholar 

  • Köpke AKE, Wittmann-Liebold B (1989) Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms. Can J Microbiol 35:11–20

    PubMed  Google Scholar 

  • Koval SF, Jarrell KF (1987) Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J Bacteriol 169:1298–1306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreisl P, Kandler O (1986) Chemical structure of the cell wall polymer of Methanosarcina. Syst Appl Microbiol 7:293–299

    CAS  Google Scholar 

  • Kristjansson JK, Schönheit P, Thauer RK (1982) Different K, values for hydrogen of methanogenic bacteria and sulfate reducing bacteria. Arch Microbiol 131:278–282

    CAS  Google Scholar 

  • Lake JA, Henderson E, Clark MW, Matheson AT (1982) Mapping evolution with ribosome structure: intralineage constancy and interlineage variation. Proc Natl Acad Sci USA 79:5948–5952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langworthy TA (1985) Lipids of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 459–497

    Google Scholar 

  • Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105

    Google Scholar 

  • Lechner K, Heller G, Bock A (1988) Gene for the diphtheria toxin-susceptible elongation factor 2 from Methanococcus vannielii. Nucl Acids Res 16:7817–7826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341

    Google Scholar 

  • Liu Y, Boone DR, Choy C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40:111–116

    Google Scholar 

  • Liu Y, Boone DR, Sleat R, Mah RA (1985) Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl Environ Microbiol 49:608–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450

    CAS  Google Scholar 

  • Ljungdahl LG, Wiegel J (1986) Working with anaerobic bacteria. In: DeMain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 84–96

    Google Scholar 

  • Lobo AL, Zinder SH (1988) Diazotrophy and nitrogenase activity in the archaebacterium Methanosarcina barkeri 277 Appl. Environ Microbiol 54:1656–1661

    CAS  Google Scholar 

  • Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl Environ Microbiol 49:1530–1531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48:81–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lysenko AM, Zhilina TN (1985) Taxonomic position of Methanosarcina vacuolata and Methanococcus halophilus determined by the technique of DNA-DNA hybridization (Russ.). Microbiology 54:501–502

    CAS  Google Scholar 

  • Macy JM, Snellen JE, Hungate RE (1972) Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323

    CAS  PubMed  Google Scholar 

  • Maestrojuán GM, Boone DR, Xun L, Mah RA, Zhang L (1990) Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int J Syst Bacteriol 40:117–122

    Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  • Mah RA, Smith MR (1981) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Hander W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 948–977

    Google Scholar 

  • Matheson AT (1985) Ribosomes of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 345–377

    Google Scholar 

  • Mathrani IM, Boone DR (1985) Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50:140–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142

    CAS  PubMed  Google Scholar 

  • Mazumder TK, Nishio N, Fukuzaki S, Nagai S (1986) Effect of sulfur-containing compounds on growth of Methanosarcina barkeri in defined medium. Appl Environ Microbiol 52:617–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Migas J, Anderson KL, Cruden DL, Markovetz AJ (1989) Chemotaxis in Methanospirillum hungatei. Appl Environ Microbiol 55:264–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL (1989) Genus II. Methanobrevibacter. In: Staley JT (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2178–2183

    Google Scholar 

  • Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1983) Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces. J Bacteriol 153:1051–1055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229

    CAS  Google Scholar 

  • Miller TL, Wolin MJ, Conway de Macario E, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL, Wolin MJ, Hongxue Z, Bryant MP (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51:201–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Misawa H, Hoshi T, Kitame F, Homma M, Nakamura K (1986) Isolation of an antigenically unique methanogen from human feces. Appl Environ Microbiol 51:429–431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morii H, Nishihara M, Koga Y (1988) Composition of polar lipids of Methanobrevibacter arboriphilicus and structure determination of the signature phosphoglycolipid of Methanobacteriaceae. Agric Biol Chem 52:3149–3156

    CAS  Google Scholar 

  • Murray PA, Zinder SH (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312:284–286

    CAS  Google Scholar 

  • Murray PA, Zinder SH (1985) Nutritional requirements of Methanosarcina sp. strain TM-1. Appl Environ Microbiol 50:49–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray PA, Zinder SH (1987) Polysaccharide reserve material in the acetotrophic methanogen, Methanosarcina thermophila strain TM-1: accumulation and mobilization. Arch Microbiol 147:109–116

    CAS  Google Scholar 

  • Nagle DP, Wolfe RS (1985) Methanogenesis. In: Bull AT, Dalton H (eds) Comprehensive biotechnology, vol 1. Pergamon, Oxford, pp 425–438

    Google Scholar 

  • Noll KM, Barber TS (1988) Vitamin contents of archaebacteria. J Bacteriol 170:4315–4321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nozhevnikova AN, Chudina VI (1984) Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Arch Mikrobiol Zh 53:756–760

    Google Scholar 

  • Nozhevnikova AN, Yagodina TG (1982) A thermophilic acetate methane-producing bacterium. Microbiology (Engl Transl) 51:534–541

    Google Scholar 

  • Nusser E, König H (1987) S layer studies on three species of living at different temperatures. Can J Microbiol 33:256–261

    CAS  Google Scholar 

  • Obraztsova AY, Shipin OV, Bezrukova LV, Belyaev SS (1987) Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov. Microbiology (Engl Transl) 56:523–527

    Google Scholar 

  • Ollivier B, Lombardo A, Garcia JL (1984) Isolation and characterization of a new thermophilic Methanosarcina strain (strain MP). Ann Microbiol (Inst Pasteur) 135B:187–198

    CAS  Google Scholar 

  • Ollivier BM, Mah RA, Garcia JL, Boone DR (1986) Isolation and characterization of Methanogenium bourgense sp. nov. Int J Syst Bacteriol 36:297–301

    CAS  Google Scholar 

  • Ollivier BM, Mah RA, Garcia JL, Robinson R (1985) Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35:127–130

    CAS  Google Scholar 

  • Patel GB (1984) Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can J Microbiol 30:1383–1396

    CAS  Google Scholar 

  • Patel GB, Roth LA, Sprott GD (1979) Factors influencing filament length of Methanospirillum hungatei. J Gen Microbiol 112:411–415

    CAS  Google Scholar 

  • Patel GB, Roth LA, van den Berg L, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22:1404–1410

    CAS  PubMed  Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82

    Google Scholar 

  • Patel GB, Sprott GD, Humphrey RW, Beveridge TJ (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei strains GP1 and JF1. Can J Microbiol 32:623–631

    CAS  Google Scholar 

  • Patel GB, Sprott GD, Fein JE (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40:12–18

    Google Scholar 

  • Paterek JR, Smith PH (1985) Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl Environ Microbiol 50:877–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123

    Google Scholar 

  • Paynter MJB, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perski HJ, Schönheit P, Thauer RK (1982) Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett 143:323–326

    CAS  Google Scholar 

  • Pfaltz A, Kobelt A, Hüster R, Thauer RK (1987) Biosynthesis of coenzyme F430 in Methanogenic bacteria identification of 15,173-seco-F430-173-acid as an intermediate. Eur J Biochem 170:459–467

    CAS  PubMed  Google Scholar 

  • Possot O, Gernhardt P, Klien A, Sibold L (1988) Analysis of drug resistance in the archaebacterium Methanococcus voltae with respect to potential use in genetic engineering. Appl Environ Microbiol 54:734–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell GE (1983) Interpreting gas kinetics of batch cultures. Biotechnol Lett 5:437–440

    Google Scholar 

  • Rimbault A, Niel P, Virelizier H, Darbord JC, Leluan G (1988) L-Methionine, a precursor of trace methane in some proteolytic clostridia. Appl Environ Microbiol 54:1581–1586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivard CJ, Henson JM, Thomas MV, Smith PH (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32:430–436

    Google Scholar 

  • Robinson RW (1986) Life cycles of the methanogenic archaebacterium Methanosarcina mazei. Appl Environ Microbiol 52:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romesser JA, Wolfe RS, Mayer F, Speiss E, Walther-Mauruschat A (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153

    CAS  Google Scholar 

  • Rose CS, Pirt SJ (1981) Conversion of glucose to fatty acids and methane: roles of two mycoplasmal agents. J Bacteriol 147:248–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouvière PE, Bobik TA, Wolfe RS (1988) Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum AH. J Bacteriol 170:3946–3952

    PubMed Central  PubMed  Google Scholar 

  • Rouvière PE, Wolfe RS (1987) Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch Microbiol 148:253–259

    Google Scholar 

  • Rouvière PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7916

    PubMed  Google Scholar 

  • Rouvière PE, Wolfe RS (1989) Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum ΔH: resolution into two components. J Bacteriol 171:4556–4562

    PubMed Central  PubMed  Google Scholar 

  • Santoro N, Konisky J (1987) Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system. J Bacteriol 169:660–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer NL, Whitman WB (1989) Formate growth and pH control by volatile formic and acetic acids in batch cultures of methanococci. J Microbiol Methods 10:1–7

    CAS  Google Scholar 

  • Scherer PA (1989) Vanadium and molybdenum requirement for the fixation of molecular nitrogen by two Methanosarcina strains. Arch Microbiol 151:44–48

    CAS  Google Scholar 

  • Scherer PA, Sahm H (1981a) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65

    Google Scholar 

  • Scherer PA, Sahm H (1981b) Influence of sulphur-containing compounds on the growth of Methanosarcina barkeri in defined medium. Eur J Appl Microbiol Biotechnol 12:28–35

    CAS  Google Scholar 

  • Schlicht F, Schimpff-Weiland G, Follmann H (1985) Methanogenic bacteria contain thioredoxin. Naturwissen-schaften 72:328–330

    CAS  Google Scholar 

  • Schönheit P, Beimborn DB (1986) Monensin and gramicidin stimulate CH4 formation from H2 and CO2 in Methanobacterium thermoautotrophicum at low external Na+ concentration. Arch Microbiol 146:181–185

    Google Scholar 

  • Shieh J, Mesbah M, Whitman WB (1988) Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol 170:4091–4096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shieh J, Whitman WB (1987) Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol 169:5327–5329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sibold L, Pariot D, Bhatnagar L, Henriquet M, Aubert J-P (1985) Hybridization of DNA from methanogenic bacteria with nitrogenase structural genes (nif-HDK). Mol Gen Genet 200:40–46

    CAS  Google Scholar 

  • Sment KA, Konisky J (1989) Chemotaxis in the archaebacterium Methanococcus voltae. J Bacteriol 171:2870–2872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith PH, Hungate RE (1958) Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol 75:713–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984a) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45:684–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowers KR, Ferry JG (1985) Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine. Arch Microbiol 142:148–151

    CAS  Google Scholar 

  • Sowers KR, Gunsalus RP (1988) Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J Bacteriol 170:998–1002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowers KR, Johnson JL, Ferry JG (1984b) Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int J Syst Bacteriol 34:444–450

    CAS  Google Scholar 

  • Stadtman TC, Barker HA (1951) Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. J Bacteriol 62:269–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stetter KO (1989) Genus II. Methanolobus. In: Staley JT (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2205–2207

    Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecéovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1(C2):166–178

    Google Scholar 

  • Stupperich E, Kräutler B (1988) Pseudo vitamin B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch Microbiol 149:268–271

    CAS  Google Scholar 

  • Suflita JM, Robinson JA, Tiedje JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl Environ Microbiol 45:1466–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanner RS, Wolfe RS (1988) Nutrient requirements of Methanomicrobium mobile. Appl Environ Microbiol 54:625–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terlesky KC, Barber MJ, Aceti DJ, Ferry JG (1987) EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J Biol Chem 262:15392–15395

    CAS  PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988a) Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J Biol Chem 263:4080–4082

    CAS  PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988b) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem 263:4075–4079

    CAS  PubMed  Google Scholar 

  • Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomm M, Madon J, Stetter KO (1986) DNA-dependent RNA polymerases of the three orders of methanogens. Biol Chem Hoppe-Seyler 367:473–481

    CAS  PubMed  Google Scholar 

  • Thomm M, Wich G, Brown JW, Frey G, Sherf BA, Beckler GS (1989) An archaebacterial promoter sequence assigned by RNA polymerase binding experiments. Can J Microbiol 35:30–35

    CAS  PubMed  Google Scholar 

  • Touzel JP, Albagnac G (1983) Isolation and characterization of Methanococcus mazei strain MQ. FEMS Microbiol Lett 16:241–245

    Google Scholar 

  • Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI 55. Syst Appl Microbiol 6:66–71

    CAS  Google Scholar 

  • Touzel JP, Prensier G, Roustan JL, Thomas I, Dubourguier HC, Albagnac G (1988) Description of a new strain of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int J Syst Bacteriol 38:30–36

    CAS  Google Scholar 

  • van Bruggen JJA, Stumm CK, Zwart KB, Vogels GD (1985) Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. FEMS Microbiol Ecol 31:187–192

    Google Scholar 

  • van Bruggen JJA, Zwart KB, Hermans JGF, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Google Scholar 

  • van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Google Scholar 

  • van de Wijngaard WMH, van der Drift C, Vogels GD (1988) Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol Lett 52:165–172

    Google Scholar 

  • van den Berg L (1984) Developments in methanogenesis from industrial waste water. Can J Microbiol 30:975–990

    Google Scholar 

  • Weaver GA, Krause JA, Miller TL, Wolin MJ (1986) Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27:698–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weil CF, Sherf BA, Reeve JN (1989) A comparison of the methyl reductase genes and gene products. Can J Microbiol 35:101–108

    CAS  PubMed  Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    CAS  PubMed Central  PubMed  Google Scholar 

  • White RH (1989) Biosynthesis of the 7-mercaptoheptanoic acid subunit of component B [(7-mercaptoheptanoyl) threonine phosphate] of methanogenic bacteria. Biochemistry 28:860–865

    CAS  Google Scholar 

  • Whitman WB (1989) Methanococcales. In: Staley JT, Bryant MP, Pfennig N (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkens, Baltimore, pp 2185–2190

    Google Scholar 

  • Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitman WB, Shieh J, Sohn S, Caras DS, Prem-achandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240

    Google Scholar 

  • Whitman WB, Sohn SH, Kuk SU, Xing RY (1987) Role of amino acids and vitamins in nutrition of mesophilic Methanococcus sp. Appl Environ Microbiol 53:2373–2378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widdel F, Rouvière PE, Wolfe RS (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150:477–481

    CAS  Google Scholar 

  • Wildenauer FX, Winter J (1985) Anaerobic digestion of high-strength acidic whey in a pH-controlled up-flow fixed film loop reactor. Appl Microbiol Biotechnol 22:367–372

    CAS  Google Scholar 

  • Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36

    CAS  Google Scholar 

  • Winfrey MR, Zeikus JG (1979) Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl Environ Microbiol 37:213–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winter J (1983) Maintenance of stock cultures of methanogens in the laboratory. Syst Appl Microbiol 4:558–563

    CAS  PubMed  Google Scholar 

  • Winter J, Lerp C, Zabel H-P, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5:457–466

    CAS  Google Scholar 

  • Wodzinski RL, Gennaro RN, Scholla MH (1987) Economics of the bioconversion of biomass to methane and other vendable products. In: Laskin AI (ed) Advances in applied microbiology, vol 32. Academic, New York, pp 37–88

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Wolfe RS (eds) (1985) The bacteria, vol 8, Archaebacteria. Academic, New York

    Google Scholar 

  • Wolin MJ, Miller TL (1987) Bioconversion of organic carbon to CH4 and CO2. Geomicrobial J 5:239–259

    CAS  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int 12:421–440

    CAS  PubMed  Google Scholar 

  • Worakit S, Boone DR, Mah RA, Abdel-Samie M-E, El-Halwagi MM (1986) Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382

    Google Scholar 

  • Worrell VE, Nagle DP Jr, McCarthy D, Eisenbraun A (1988) Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 170:653–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xing RY, Whitman WB (1987) Sulfometuron methylsensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp. J Bacteriol 169:4486–4492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xun L, Boone DR, Mah RA (1988) Control of the life cycle of Methanosarcina mazei S-6 by manipulation of growth conditions. Appl Environ Microbiol 54:2064–2068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xun L, Boone DR, Mah RA (1989) Deoxyribonucleic acid hybridization study of Methanogenium and Methanocorpusculum species, emendation of the genus Methanocorpusculum, and transfer of Methanogenium aggregans to the genus Methanocorpusculum as Methanocorpusculum aggregans comb. nov. Int J Syst Bacteriol 39:109–111

    Google Scholar 

  • Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 487–523

    Google Scholar 

  • Yu IK, Kawamura F (1987) Halomethanococcus doii gen. nov., sp. nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J Gen Appl Microbiol 33:303–310

    CAS  Google Scholar 

  • Zabel H-P, Holler E, Winter J (1987) Mode of inhibition of the DNA polymerase a Methanococcus vannielii by aphidicolin. Eur J Biochem 165:171–175

    CAS  PubMed  Google Scholar 

  • Zabel HP, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137:308–315

    CAS  Google Scholar 

  • Zabel H-P, König H, Winter J (1985) Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst Appl Microbiol 6:72–78

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    CAS  PubMed  Google Scholar 

  • Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeikus JG, Henning DL (1975) Methanobacterium arboriphilum sp. nov. an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41:543–552

    CAS  PubMed  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zellner G, Winter J (1987a) Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol Lett 44:323–328

    CAS  Google Scholar 

  • Zellner G, Winter J (1987b) Analysis of a highly efficient methanogenic consortium producing biogas from whey. System Appl Microbiol 9:284–292

    CAS  Google Scholar 

  • Zellner G, Alten C, Stackebrandt E, Conway de Macario E, Winter J (1987a) Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147:13–20

    CAS  Google Scholar 

  • Zellner G, Vogel P, Kneifel H, Winter J (1987b) Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl Microbiol Biotechnol 27:306–314

    Google Scholar 

  • Zellner G, Bleicher K, Braun E, Kneifel H, Tindall BJ, Conway de Macario E, Winter J (1989a) Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch Microbiol 151:1–9

    CAS  Google Scholar 

  • Zellner G, Messner P, Kneifel H, Tindall BJ, Winter J, Stackebrandt E (1989b) Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J Gen Appl Microbiol 35:185–202

    CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Messner P, Tindall BJ, Conway de Macario E, Knelfel H, Sleytr UB (1989c) Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151:381–390

    CAS  PubMed  Google Scholar 

  • Zellner G, Sleytr UG, Messner P, Kneifel H, Winter J (1990) Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153:287–293

    CAS  Google Scholar 

  • Zhao Y, Boone DR, Mah RA, Boone JE, Xun L (1989) Isolation and characterization of Methanocorpusculum labreanum sp. nov. from the LaBrea tar pits. Int J Syst Bacteriol 39:10–13

    Google Scholar 

  • Zhao Y, Zhang H, Boone DR, Mah RA (1986) Isolation and characterization of a fast-growing, thermophilic Methanobacterium species. Appl Environ Microbiol 52:1227–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183

    CAS  Google Scholar 

  • Zhilina TN (1972) Death of Methanosarcina in the air. Microbiology (Engl Transl) 41:980–981

    Google Scholar 

  • Zhilina TN (1976) Biotypes of methanosarcina. Microbiology (Russ) 45:481–489

    CAS  Google Scholar 

  • Zhilina TN (1983) New obligate halophilic methane-producing bacterium. Microbiology (Engl Transl) 52:290–297

    Google Scholar 

  • Zhilina TN, Ilarionov SA (1984) Characteristics of formate-assimilating methane bacteria and description of Methanobacterium thermoformicicum sp. nov. Microbiology (Engl Trans) 53:647–651

    Google Scholar 

  • Zhilina TN, Svetlichnaya TP (1989) The ultrafine structure of Methanohalobium evestigatum an extreme halophilic bacterium producing methane. Microbiology (Russ) 58:312–318

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1979a) Comparative cytology of methanosarcinae and description of Methanosarcina vacuolata sp. nova. Microbiology (Engl Transl) 48:223–228

    Google Scholar 

  • Zhilina TN, Zavarzin GA (1979b) Cyst formation by methanosarcina. Microbiology (Russ) 48:451–456

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1987a) Methanosarcina vacuolata sp. nov., a vacuolated species of methanosarcina. Int J Syst Bacteriol 37:281–283

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1987b) Methanohalobium evestigatus, nov. gen., nov. sp. the extremely halophilic methanogenic Archaebacterium. Dokl Akad Nauk SSSR 293:464–468

    CAS  Google Scholar 

  • Zillig W, Palm P, Reiter W-D, Gropp F, Puhler G, Klenk H-P (1988) Comparative evaluation of gene expression in archaebacteria. Eur J Biochem 173:473–482

    CAS  PubMed  Google Scholar 

  • Zinder SH, Anguish T, Lobo AL (1987) Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch Microbiol 146:315–322

    Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinder SH, Sowers KR, Ferry JG (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35:522–523

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Terry Miller, Josef Winter, and Tatjana N. Zhilina for their critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Whitman, W.B., Bowen, T.L., Boone, D.R. (2014). The Methanogenic Bacteria. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_407

Download citation

Publish with us

Policies and ethics