Skip to main content

The Family Methanocellaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Methanocellaceae is a family within the order Methanocellales Sakai et al. (Int J Syst Evol Microbiol 58:929–936, 2008). This order and family contains a single genus Methanocella. Hitherto three species within the genus Methanocella have been reported Sakai et al. (Int J Syst Evol Microbiol 58:929–936, 2008; Int J Syst Evol Microbiol 60:2918-2923, 2010), Lü and Lu (PLoS ONE 7: e35279, 2012a); all the reported species were isolated from rice field soil. Cells are nonmotile, irregular rods and anaerobic; energy metabolism is by reduction of CO2 to CH4 with H2 as an electron donor; some species can also use formate as an electron donor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6:e20453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angel R, Claus P, Conrad R (2012a) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angel R, Kammann C, Claus P, Conrad R (2012b) Effect of long-term free-air CO2 enrichment on the diversity and activity of soil methanogens in a periodically waterlogged grassland. Soil Biol Biochem 51:96–103

    Article  CAS  Google Scholar 

  • Cadillo-Quiroz H, Braüer S, Yashiro E, Sun C, Yavitt J, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74:2059–2068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Yavitt JB, Zinder SH, Thies JE (2010) Diversity and community structure of Archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog. Microb Ecol 59:757–767

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Lett 38:353–360

    Article  CAS  Google Scholar 

  • Conrad R, Mayer H-P, Wüst M (1989) Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol Lett 62:265–273

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M (2009) Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 11:1844–1853

    Article  CAS  PubMed  Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere. Science 313:370–372

    Article  CAS  PubMed  Google Scholar 

  • Fey A, Chin KJ, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3:295–303

    Article  CAS  PubMed  Google Scholar 

  • Goffredi SK, Jang GE, Woodside WT, Ussler W III (2011) Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies. Front Microbiol 2:256

    PubMed Central  PubMed  Google Scholar 

  • Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    PubMed Central  Google Scholar 

  • Harmsen HJ, Van Kuijk BL, Plugge CM, Akkermans AD, De Vos WM, Stams AJ (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Jurgens G, Glöckner F, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    CAS  PubMed  Google Scholar 

  • Kaku N, Ueki A, Ueki K, Watanabe K (2005) Methanogenesis as an important terminal electron accepting process in estuarine sediment at the Mouth of Orikasa River. Microbes Environ 20:41–52

    Article  Google Scholar 

  • Krüger M, Frenzel P, Kemnitz D, Conrad R (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51:323–331

    Article  PubMed  Google Scholar 

  • Liu F, Conrad R (2010) Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50 °C. Environ Microbiol 12:2341–2354

    CAS  PubMed  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lü Z, Lu Y (2012a) Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLoS One 7:e35279

    Article  PubMed Central  PubMed  Google Scholar 

  • Lü Z, Lu Y (2012b) Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil. J Bacteriol 194:2398–2399

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Y, Lueders T, Friedrich MW, Conrad R (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:326–336

    Article  CAS  PubMed  Google Scholar 

  • Lueders T, Chin KJ, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Article  CAS  PubMed  Google Scholar 

  • Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: Syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma K, Conrad R, Lu Y (2012) Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 78:445–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinson GO, Werner FA, Scherber C, Conrad R, Corre MD, Flessa H, Wolf K, Klose M, Gradstein SR, Veldkamp E (2010) Methane emissions from tank bromeliads in neotropical forests. Nature Geosci 3:766–769

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186

    Article  CAS  Google Scholar 

  • Rui J, Qiu Q, Lu Y (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77:264–273

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster Rice Cluster I. Appl Environ Microbiol 73:4326–4331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage “Rice Cluster I,” and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936

    Article  PubMed  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Tseng IC, Ohashi A, Harada H, Kamagata Y (2009) Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 75:4892–4896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai S, Conrad R, Liesack W, Imachi H (2010) Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 60:2918–2923

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, Ichikawa N, Tasumi E, Hiraki AT, Shimizu A, Kato Y, Nishiko R, Mori K, Fujita N, Imachi H, Takai K (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6:e22898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schütz H, Seiler W, Conrad R (1990) Influence of soil-temperature on methane emission from rice paddy fields. Biogeochemistry 11:77–95

    Article  Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2009) Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biol Biochem 41:276–285

    Article  CAS  Google Scholar 

  • Wu X-L, Friedrich MW, Conrad R (2006) Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol 8:394–404

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Conrad R (2000) Effect of temperature on reduction of iron and production of carbon dioxide and methane in anoxic wetland rice soils. Biol Ferti Soils 32:135–141

    Article  CAS  Google Scholar 

  • Yuan Y, Conrad R, Lu Y (2011) Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. Environ Microbiol Rep 3:320–328

    Article  CAS  PubMed  Google Scholar 

  • Zepp Falz K, Holliger C, Großkopf R, Liesack W, Nozhevnikova AN, Müller B, Wehrli B, Hahn D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65:2402–2408

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanae Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sakai, S., Conrad, R., Imachi, H. (2014). The Family Methanocellaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_318

Download citation

Publish with us

Policies and ethics