Skip to main content

Color Transfer

  • Living reference work entry
  • First Online:
Encyclopedia of Color Science and Technology
  • 12 Accesses

Synonyms

Color mapping

Definition

Color transfer is the name given to a set of technologies that aim to alter the colors in an image or video by means of an example image or video. Thus, the mood or color scheme of an image can be changed to resemble that of another image, without the need to paint over pixels or manually alter an image’s color palette.

Key Principles

Editing colors with traditional tools can be a laborious and time-consuming task. Professional color grading tools are complex and often expensive pieces of software that take time and effort to master. Rather than use buttons and sliders to adjust the color properties of an image, a convenient alternative may be to find an example image (also known as reference image) which already has the desired color mood. Using the colors defined in the example image, color transfer methods try to alter the colors of the input image to match those of the example image.

The choice of example image is often determined by its use case....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001)

    Article  Google Scholar 

  2. Reinhard, E., Pouli, T.: Colour spaces for colour transfer. In: IAPR Computational Color Imaging Workshop. volume 6626 of Lecture Notes in Computer Science. Springer, pp. 1–15 (2011)

    Google Scholar 

  3. Abadpour, A., Kasaei, S.: An efficient PCA-based color transfer method. J. Vis. Commun. Image Represent. 18, 15–34 (2007)

    Article  Google Scholar 

  4. Pouli, T., Reinhard, E.: Progressive color transfer for images of arbitrary dynamic range. Comput. Graph. 35(1), 67–80 (2011)

    Article  Google Scholar 

  5. Xiao, X., Ma, L.: Gradient-preserving color transfer. Comput. Graph. Forum. 28(7), 1879–1886 (2009)

    Article  Google Scholar 

  6. Pitié, F., Kokaram, A., Dahyot, R.: N-dimensional probability density function transfer and its application to colour transfer. In: ICCV ‘05: Proceedings of the 2005 IEEE International Conference on Computer Vision, vol. volume 2, pp. 1434–1439. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  7. Pitié, F., Kokaram, A., Dahyot, R.: Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107(2), 1434–1439 (2007)

    Google Scholar 

  8. Pitié, F., Kokaram, A.: The linear monge-kantorovitch linear colour mapping for example-based colour transfer. In: 4th European Conference on Visual Media Production. (2007)

    Google Scholar 

  9. Rabin, J., Ferradans, S., Papadakis, N.: Adaptive color transfer with relaxed optimal transport. In: IEEE International Conference on Image Processing, pp. 4852–4856 (2014)

    Google Scholar 

  10. Rabin, J., Papadakis, N.: Non-convex relaxation of optimal transport for color transfer between images. In: Geometric Science of Information, pp. 87–95. Springer International Publishing (2015)

    Chapter  Google Scholar 

  11. Tai, Y.W., Jia, J., Tang, C.K.: Soft color segmentationn and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1520–1537 (2007)

    Article  Google Scholar 

  12. Fu, Q., He, Y., Hou, F., Zhang, J., Zeng, A., Liu, Y.J.: Vectorization based color transfer for portrait images. Comput. Aided Des. 115, 111–121 (2019)

    Article  Google Scholar 

  13. Li, S.: A review of feature detection and match algorithms for localization and mapping. In: IOP Conference Series: Materials Science and Engineering, vol. volume 231, p. 012003 (2017)

    Google Scholar 

  14. Faridul, H.S., Stauder, J., Trémeau, A.: Optimization of sparse color correspondences for color mapping. In: Color Imaging Conference, pp. 128–134 (2012)

    Google Scholar 

  15. HaCohen, Y., Shechtman, E., Goldman, D.B., Lischinski, D.: Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. 30(4), 70 (2011)

    Article  Google Scholar 

  16. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  17. He, M., Liao, J., Chen, D., Yuan, L., Sander, P.V.: Progressive color transfer with dense semantic correspondences. ACM Trans. Graph. 38(2), 13 (2019)

    Article  Google Scholar 

  18. Faridul, H.S., Pouli, T., Chamaret, C., Stauder, J., Reinhard, E., Kuzovkin, D., Trémeau, A.: Colour mapping: a review of recent methods, extensions and applications. Comput. Graph. Forum. 35(1), 59–88 (2016)

    Article  Google Scholar 

  19. Hristova, H., Le Meur, O., Cozot, R., Bouatouch, K.: Perceptual metric for color transfer methods. In: 2017 IEEE International Conference on Image Processing, pp. 1237–1241 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Reinhard .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reinhard, E. (2022). Color Transfer. In: Shamey, R. (eds) Encyclopedia of Color Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_415-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27851-8_415-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27851-8

  • Online ISBN: 978-3-642-27851-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics