Skip to main content

Adrenal Steroid Hormones

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The classical way to evaluate hormone function is to surgically ablate the hormone-producing endocrine gland and substitute it with exogenously administered substances (extracts or synthetic hormones) (Biedl 1916). Many studies on the physiological role of adrenocortical hormones and the pharmacological effects of corticosteroids were performed using adrenalectomized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Adrenalectomy in Rats

  • Biedl A (1916) Physiologie der Nebenniere. Exstirpationsversuche. In: Biedl A (ed) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Part I, 3rd edn. Urban and Schwarzenberg, Berlin, pp 458–491

    Google Scholar 

  • Bomskov C (1937) Die chirurgischen Methoden der Nebennierenforschung. In: Bomskov C (ed) Methodik der Hormonforschung, vol 1. Thieme, Leipzig, pp 467–485

    Google Scholar 

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Grollman A (1941) Biological assay of adrenal cortical activity. Endocrinology 29:855–861

    Google Scholar 

Corticoid Receptor Binding

  • Barnes PJ, Adcock I (1993) Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 14:436–441

    CAS  PubMed  Google Scholar 

  • Beato M, Truss M, Chávez S (1996) Control of transcription by steroid hormones. Ann N Y Acad Sci 784:93–123

    CAS  PubMed  Google Scholar 

  • Berger TS, Parandoosh Z, Perry BW, Stein RB (1992) Interaction of glucocorticoid analogues with the human glucocorticoid receptor. J Steroid Biochem Mol Biol 41:733–738

    CAS  PubMed  Google Scholar 

  • Brinkmann AO (1994) Steroid hormone receptors: activators of gene transcription. J Pediatr Endocrinol 7:275–282

    CAS  PubMed  Google Scholar 

  • Carson-Jurica MA, Schrader WR, O’Malley BW (1990) Steroid receptor family: structure and functions. Endocr Rev 11:201–220

    CAS  PubMed  Google Scholar 

  • Distelhorst CW (1993) Steroid hormone receptors. J Lab Clin Med 122:241–244

    CAS  PubMed  Google Scholar 

  • Druzgala P, Hochhaus G, Bodor N (1991) Soft drugs. 10. Blanching activity and receptor binding affinity of a new type of glucocorticoid: loteprednol etabonate. J Steroid Biochem Mol Biol 38:149–154

    CAS  PubMed  Google Scholar 

  • Guo Z, Chen YZ, Xu RB, Fu H (1995) Binding characteristics of glucocorticoid receptor in synaptic plasma membrane from rat brain. Funct Neurol 10:183–194

    CAS  PubMed  Google Scholar 

  • Härd T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JÅ, Kaptein R (1990) Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249:157–160

    PubMed  Google Scholar 

  • Hochhaus G, Druzgala P, Hochhaus R, Huang MJ, Bodor N (1991) Glucocorticoid activity and structure activity relationships in a series of some novel 17α-ether-substituted steroids: influence of 17α-substituents. Drug Design Discov 8:117–125

    CAS  Google Scholar 

  • Jacobson L, Brooke S, Sapolsky R (1993) Corticosterone is a preferable ligand for measuring brain corticosteroid receptors: competition by RU 28362 and RU 26752 for dexamethasone binding in rat hippocampal cytosol. Brain Res 625:84–92

    CAS  PubMed  Google Scholar 

  • Jensen EV (1996) Steroid hormones, receptors, and antagonists. Ann N Y Acad Sci 784:1–17

    CAS  PubMed  Google Scholar 

  • Lazar MA (1991) Steroid and thyroid hormone receptors. Endocrinol Metab Clin North Am 20:681–695

    CAS  PubMed  Google Scholar 

  • Lefebvre P, Danze PM, Sablonniere B, Richard C, Formstecher P, Dautrevaux M (1988) Association of the glucocorticoid receptor binding with the 90K nonsteroid-binding component is stabilized by both steroidal and nonsteroidal antiglucocorticoids in intact cells. Biochemistry 27:9186–9194

    CAS  PubMed  Google Scholar 

  • Lopez S, Simons SS (1991) Dexamethasone 21-(β-isothiocyanatoethyl) thioether: a new affinity label for glucocorticoid receptors. J Med Chem 34:1762–1767

    CAS  PubMed  Google Scholar 

  • Ojasoo T, Raynaud JP, Doré JC (1994) Affiliations among steroid receptors as revealed by multivariate analysis of steroid binding data. J Steroid Biochem Mol Biol 48:31–46

    CAS  PubMed  Google Scholar 

  • Ojasoo T, Raynaud JP, Doré JC (1995) Correspondence factor analysis of steroid libraries. Steroids 60:458–469

    CAS  PubMed  Google Scholar 

  • Power RF, Conneely OM, O’Malley BW (1993) New insights into activation of the steroid hormone receptor superfamily. Trends Pharmacol Sci 13:318–323

    Google Scholar 

  • Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979) Receptor binding as a tool in the development of new bioactive steroids. In: Ariëns EJ (ed) Drug design, vol VIII. Academic, New York, pp 169–214

    Google Scholar 

  • Rohdewald P, Möllman HW, Hochhaus G (1985) Affinities of glucocorticoids for glucocorticoid receptors in the human lung. Agents Actions 17:290–292

    CAS  Google Scholar 

  • Rousseau GG, Schmit JP (1977) Structure-activity relationships for glucocorticoids – I: Determination of receptor binding and biological activity. J Steroid Biochem 8:911–919

    Google Scholar 

  • Schlechte JA, Ginsberg BH, Sherman BM (1982) Regulation of the glucocorticoid receptor in human lymphocytes. J Steroid Biochem 16:69–74

    CAS  PubMed  Google Scholar 

  • Spencer RL, Young EA, Choo PH, McEwen BS (1990) Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Res 514:37–48

    CAS  PubMed  Google Scholar 

  • Srivastava D, Thompson EB (1990) Two glucocorticoid binding sites on the human glucocorticoid receptor. Endocrinology 127:1770–1778

    CAS  PubMed  Google Scholar 

  • Steiner AE, Wittliff JL (1985) A whole-cell assay for glucocorticoid binding sites in normal human lymphocytes. Clin Chem 31:1855–1860

    CAS  PubMed  Google Scholar 

  • Teutsch G, Nique F, Lemoine G, Bouchoux F, Cérède E, Gofflo D, Philibert D (1995) General structure-activity correlations of antihormones. Ann N Y Acad Sci 761:5–28

    CAS  PubMed  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of anti-inflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    CAS  PubMed  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnology 12:1003–1007

    Google Scholar 

  • Wittliff LJ, Raffelsberger W (1995) Mechanisms of signal transduction: sex hormones, their receptors and clinical utility. J Clin Ligand Assay 18:211–235

    Google Scholar 

  • Wojnar RJ, Varma RK, Free CA, Millonig RC, Karanewsky D, Lutsky BN (1986) Androstene-17-thioketals. 1st communication: glucocorticoid receptor binding, antiproliferative and anti-inflammatory activities of some novel 20-thiasteroids (androstene-17-thioketals). Arzneimittelforschung 36:1782–1787

    CAS  PubMed  Google Scholar 

  • Yoshikawa N, Makino Y, Okamoto K, Moromoto C, Makino I, Tanaka H (2002) Distinct interaction of cortivazol with the ligand binding domain confers glucocorticoid specificity. Cortivazol is a specific ligand for the glucocorticoid receptor. J Biol Chem 277:5529–5540

    CAS  PubMed  Google Scholar 

  • Zeelen FJ (1992) Medicinal chemistry of steroids: recent developments. In: Testa B (ed) Advances in drug research. Academic, London, pp 149–189

    Google Scholar 

Transactivation and Transrepression Assays for Glucocorticoids

  • Buttgereit F, Song IH, Straub RH, Burmester GR (2005) Aktueller Stand zur Entwicklung neuer Glucocortiocoidrezeptorliganden. Z Rheumatol 64:170–176

    CAS  PubMed  Google Scholar 

  • Pfahl M (1993) Nuclear receptor/AP-1 interaction. Endocr Rev 14:651–658

    CAS  PubMed  Google Scholar 

  • Schäcke H, Döcke WD, Asadullah H (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    PubMed  Google Scholar 

Transactivation Assay for Glucocorticoids

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 6:2237–2240

    Google Scholar 

  • DeWet JR, Wood KV, deLucca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    CAS  Google Scholar 

  • Dias JM, Go NF, Hart CP, Mattheakis LC (1998) Genetic recombination as a reporter for screening steroid receptor agonists and antagonists. Anal Biochem 258:96–102

    CAS  PubMed  Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTV-CAT into mammalian cells: inhibition of CAT expression by antiandrogens. J Steroid Biochem Mol Biol 42:787–793

    Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1055

    Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    Google Scholar 

  • Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641

    CAS  PubMed  Google Scholar 

  • Hollon T, Yoshimura FK (1989) Variation in enzymatic transient gene expression assays. Anal Biochem 182:411–418

    CAS  PubMed  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann N Y Acad Sci 761:311–335

    Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnology 12:1003–1007

    Google Scholar 

Transrepression Assay for Glucocorticoids

  • Ali A, Thompson CF, Balkovec JM, Graham DW, Hammond ML, Quraishi N, Tata JR, Einstein M, Ge L, Harris G, Kelly TM, Mazur P, Pandit S, Santoro J, Sitlani A, Wang C, Williamson J, Miller DK, Thompson CM, Zaller DM, Forrest JM, Carballo-Jane E, Luell S (2004) Novel N-arylpyrazol[3,2-c]-based ligands for the glucocorticoid receptor: receptor binding and in vivo activity. J Med Chem 47:2441–2452

    CAS  PubMed  Google Scholar 

  • Belvisis M, Wicks SL, Battram CH, Bottoms SEW, Redford JE, Woodman P, Brown TJ, Webber SE, Foster ML (2001) Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol 166:1975–1982

    Google Scholar 

  • Carballo-Jane E, Pandit S, Santoro JC, Freund C, Luell S, Harris G, Forrest MJ, Sitlani A (2004) Skeletal muscle: a dual system to measure glucocorticoid-dependent transactivation and transrepression of gene regulation. J Steroid Biochem Mol Biol 88:191–201

    CAS  PubMed  Google Scholar 

  • Coghlan MJ, Jacobson PB, Lane B, Nakane M, Lin CW, Elmore SW, Kym PR, Luly JR, Carter GW, Turner R, Tyree CM, Hu J, Elgort M, Rosen J, Miner JN (2003) A novel anti-inflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol 17:860–869

    CAS  PubMed  Google Scholar 

  • De Haij S, Adcock JM, Bakker AC, Gobin SJP, Daha MR, van Kooten C (2003) Steroid responsiveness of renal epithelial cells. Dissociation of transrepression and transactivation. J Biol Chem 278:5091–5098

    PubMed  Google Scholar 

  • Eberhardt W, Kilz T, Akool ES, Müller R, Pfeilschifter J (2005) Dissociated glucocorticoids equipotently inhibit cytokine- and cAMP-induced matrix degrading proteases in rat mesangial cells. Biochem Pharmacol 70:433–445

    CAS  PubMed  Google Scholar 

  • González M, Jiménez B, Berciano MT, Ganzález-Sancho CC, Lafarga M, Muñoz A (2000) Glucocorticoids antagonize AP-1 by inhibiting the activation/phosphorylation of JNK without affecting its subcellular distribution. J Cell Biol 150:1199–1207

    PubMed Central  PubMed  Google Scholar 

  • Hochhaus G (2004) New developments in corticosteroids. Proc Am Thorac Soc 1:269–274

    CAS  PubMed  Google Scholar 

  • Kagoshima M, Wilcke T, Ito K, Tsaprouni L, Barnes PJ, Punchard N, Adcock IM (2001) Glucocorticoid-mediated transrepression is regulated by histone acetylation and DNA methylation. Eur J Pharmacol 429:327–334

    CAS  PubMed  Google Scholar 

  • Koubovec D, Ronacher K, Stubsrud E, Louw A, Hapgood JP (2005) Synthetic progestins used in HRT have different glucocorticoid agonist properties. Mol Cell Endocrinol 242:23–32

    CAS  PubMed  Google Scholar 

  • Li G, Wang S, Gelehrter TD (2003) Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-β action. J Biol Chem 278:41779–41788

    CAS  PubMed  Google Scholar 

  • Lin CW, Nakane M, Stashko M, Falls D, Kuk J, Miller L, Huang R, Tyree C, Miner JN, Rosen J, Kym PR, Coghlan MJ, Carter G, Lane BC (2002) trans-Activation and repression properties of the novel nonsteroid glucocorticoid receptor ligand 2.5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-yl1)-1H-[1]benzo-pyrano[3,4-f]quinoline (A276575) and its four stereoisomers. Mol Pharmacol 62:297–303

    CAS  PubMed  Google Scholar 

  • Reichardt HM, Tuckermann JP, Göttlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schütz G (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20:7168–7173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaaf MJM, Cidlowski JA (2003) Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol Cell Biol 23:1922–1934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schäke H, Schottelius A, Döcke WD, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A 101:227–232

    Google Scholar 

  • Schottelius AJ, Giesen C, Asadullah K, Fierro IM, Colgan SP, Bauman J, Guilford W, Perez HD, Parkinson JF (2002) An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile. J Immunol 169:7063–7070

    Google Scholar 

  • Smith CJ, Ali A, Balkovec JM, Graham DW, Hammond ML, Patel GF, Rouen GP, Smith SK, Tata JR, Einstein M, Ge L, Harris GS, Kelly TM, Mazur P, Thompson CM, Wang CF, Williamson JM, Miller DK, Pandit S, Santoro JC, Sitlani A, Yamin TD, O’Neill EA, Zaller DM, Carballo-Jane E, Forest MJ, Luell S (2005) Novel ketal ligands for the glucocorticoid receptor: in vivo and in vitro activity. Bioorg Med Chem Lett 15:2926–2931

    CAS  PubMed  Google Scholar 

  • Stevens A, Garside H, Berry A, Waters C, White A, Ray D (2003) Dissociation of steroid receptor coactivator and nuclear receptor recruitment to the human glucocorticoid receptor by modification of the ligand-receptor interface: the role of tyrosine 735. Mol Endocrinol 17:845–859

    CAS  PubMed  Google Scholar 

  • Tanigawa K, Nagase H, Ohmori K, Tanaka K, Miyake H, Kiniwa M, Ikizawa K (2002) Species-specific differences in the glucocorticoid receptor transactivation function upon binding with betamathasone-esters. Int Immunopharmacol 2:941–950

    CAS  PubMed  Google Scholar 

  • Thompson CF, Quraishi N, Ali A, Tata JR, Hammond ML, Balkovec JM, Einstein M, Ge L, Harris G, Kelly TM, Mazur P, Pandit S, Santoro J, Sitlani A, Wang C, Williamson J, Miller DK, Yamin TD, Thompson CM, O’Neill EA, Zaller D, Forrest MJ, Carballo-Jane E, Luell S (2005) Novel heterocyclic glucocorticoids: in vitro profile and in vivo activity. Bioorg Med Chem Lett 15:2163–2167

    CAS  PubMed  Google Scholar 

  • Vanden Berghe W, Francesconi E, de Bosscher K, Resche-Rigon M, Hageman G (1999) Dissociated glucocorticoids with an anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-κB-dependent mechanism. Mol Pharmacol 56:797–806

    CAS  PubMed  Google Scholar 

  • Vayssière BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Gronemeyer H, Resche-Rigon M (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit anti-inflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    PubMed  Google Scholar 

Induction of Tyrosine Aminotransferase (TAT) in Hepatoma Cells

  • Diamondstone TI (1966) Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem 16:385–401

    Google Scholar 

  • Giesen EM, Beck G (1982) Hormonal deinduction of tyrosine aminotransferase. Horm Metab Res 14:252–256

    CAS  PubMed  Google Scholar 

  • Neef G, Beier S, Elger W, Henderson D, Wiechert R (1984) New steroids with antiprogestional and antiglucocorticoid activities. Steroids 44:349–372

    CAS  PubMed  Google Scholar 

  • Raynaud JP, Bouton MM, Moguilewsky M, Ojasoo T, Philibert D, Beck G, Labrie F, Mornon JP (1980) Steroid hormone receptors and pharmacology. J Steroid Biochem 12:143–157

    CAS  PubMed  Google Scholar 

  • Rousseau GG, Schmit JP (1977) Structure-activity relationships for glucocorticoids – I: Determination of receptor binding and biological activity. J Steroid Biochem 8:911–919

    Google Scholar 

  • Thompson EB, Tomkins GM, Curran JF (1966) Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A 56:269–303

    Google Scholar 

Effect on T-Lymphocytes

  • Kapsenberg ML, Van der Pouw-Kraan T, Stiekema FEM, Schootenmeijer A, Bos JD (1988) Direct and indirect nickel-specific stimulation of T lymphocytes from patients with allergic contact dermatitis to nickel. Eur J Immunol 18:977–982

    CAS  PubMed  Google Scholar 

  • Mollison KW, Frey TA, Gauvin DM, Kolano RM, Sheets MP, Smith ML, Pong M, Nikolaidis NM, Lane BC, Trevillyan JM, Cannon J, Marsh K, Carter GW, Or YS, Chen YW, Hsieh GC, Luly JR (1999) A macrolactam inhibitor of T helper type 1 and T helper type 2 cytokine biosynthesis for topical treatment of inflammatory skin diseases. J Invest Dermatol 112:729–738

    CAS  PubMed  Google Scholar 

  • Snijdewint FGM, Kapsenberg ML, Wauben-Penris PJJ, Bos JD (1995) Corticoids class-dependently inhibit Th1- and Th2-type cytokine production. Immunopharmacology 29:93–101

    CAS  PubMed  Google Scholar 

  • Van der Heijden FL, Wierenga EA, Bos JD, Kapsenberg ML (1991) High frequency of IL-4-producing CD4+ allergen-specific T lymphocytes in atopic dermatitis lesional skin. J Invest Dermatol 97:389–394

    PubMed  Google Scholar 

  • Van der Pouw-Kraan T, Van Kooten C, Rensink I, Aarden L (1992) Interleukin (IL)-4 production by human T cells: differential regulation of IL-4 vs. IL-2 production. Eur J Immunol 22:1237–1241

    PubMed  Google Scholar 

Inhibition of Cartilage Degradation

  • Augustine AJ, Oleksyszyn J (1997) Glucocorticoids inhibit degradation in bovine cartilage explants stimulated with concomitant plasminogen and interleukin-1α. Inflamm Res 46:60–64

    CAS  PubMed  Google Scholar 

  • Pelletier JP, DiBattista JA, Raynauld JP, Wilhelm S, Martel-Pelletier J (1995) The in vivo effects of intraarticular corticosteroid injections on cartilage lesions, stromelysin, interleukin-1, and oncogen protein synthesis in experimental osteoarthritis. Lab Invest 72:578–586

    CAS  PubMed  Google Scholar 

  • Van den Berg WB, Joosten LAB, van de Loo FAJ, de Vries BJ, van der Kraan PM, Vitters EL (1992) Drug evaluation in normal and arthritic mouse patellas. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven, New York, pp 583–595

    Google Scholar 

In Vivo Methods for Glucocorticoid Hormones

  • Bomskov C (1937b) Biologische Methoden der Nebennierenrindenforschung. In: Bomskov C (ed) Methodik der Hormonforschung, vol 1. Thieme, Leipzig, pp 489–534

    Google Scholar 

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Ingle DJ (1944) Physiology and chemistry of hormones. American Association for the Advancement of Science, Washington

    Google Scholar 

Adrenal and Thymus Involution

  • Byrnes WW, Shipley EG (1955) Guinea pig copulatory reflex in response to adrenal steroids and similar compounds. Endocrinology 57:5–9

    CAS  PubMed  Google Scholar 

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Gaignault JP, Duval D, Meyer P (1977) The relationship between glucocorticoid structure and effects upon thymocytes. Mol Pharmacol 13:948–955

    PubMed  Google Scholar 

  • Laschet U, Hohlweg W (1960) Die Testierung neuer Glucocorticoidpräparate mit dem NTP-Test. Pharmazie 15:374–377

    Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in hormone research, vol III, Steroidal activity in experimental animals and man. Academic, New York, pp 227–349

    Google Scholar 

Eosinopenia in Adrenalectomized Mice

  • Silber RH, Arcese PS (1964) Animal techniques for evaluating adrenocortical drugs. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 542–550

    Google Scholar 

  • Speirs RS, Meyer RK (1951) A method of assaying adrenal cortical hormones based on a decrease in circulating eosinophil cells of adrenalectomized mice. Endocrinology 48:316–326

    CAS  PubMed  Google Scholar 

  • Tolksdorf S (1959) Laboratory evaluation of anti-inflammatory steroids. Ann N Y Acad Sci 82:829–835

    CAS  PubMed  Google Scholar 

Liver Glycogen Test in Rats

  • Albrecht W, Longauer JK, Weirich EG (1979) Wirkung von Dermatocorticoiden auf die Aktivität der hepatischen Tryptophanpyrrolase beim Meerschweinchen. Arch Dermatol Res 265:275–281

    CAS  PubMed  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneimittelforschung 32:633–638

    Google Scholar 

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Dorfman RI, Ross E, Shipley RA (1946) The assay of adrenal cortical material by means of a glycogen test in the adrenalectomized mouse. Endocrinology 38:178–188

    CAS  PubMed  Google Scholar 

  • Knox E, Auerbach VH (1955) The hormonal control of tryptophan peroxidase in the rat. J Biol Chem 214:307–313

    CAS  PubMed  Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in hormone research, vol III, Steroidal activity in experimental animals and man. Academic, New York, pp 227–349

    Google Scholar 

  • Silber RH, Arcese PS (1964) Animal techniques for evaluating adrenocortical drugs. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 542–550

    Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of Δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    Google Scholar 

  • Venning EH, Kazmin VE, Bell JC (1946) Biological assay of adrenal corticoids. Endocrinology 38:79–89

    CAS  PubMed  Google Scholar 

  • Vogel G (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocrinol 42:85–96

    CAS  PubMed  Google Scholar 

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6α-Methylprednisolon und seinen Estern an der Ratte. Acta Endocrinol 50:621–642

    Google Scholar 

Anti-Inflammatory Activity of Corticoid Hormones

  • Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids. Molecular mechanisms. Clin Sci 94:557–572

    CAS  PubMed  Google Scholar 

  • Vayssiere BM, Dupont S, Chaoquart A et al (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit anti-inflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    CAS  PubMed  Google Scholar 

Animal Studies for Corticoid Hormone Evaluation

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneimittelforschung 32:633–638

    Google Scholar 

  • Baumann JB, Girard J, Christen E, Eberle AN, Ruch W (1985) Inhibition of the ACTH adrenal response to stress by treatment with hydrocortisone, prednisolone and dexamethasone in the rat. Horm Res 21:254–260

    CAS  PubMed  Google Scholar 

  • Laschet U, Hohlweg W (1960) Die Testierung neuer Glucocorticoidpräparate mit dem NTP-Test. Pharmazie 15:374–377

    Google Scholar 

  • Sakakura M, Yoshioka M, Kobayashi M, Takebe K (1981) Degree of inhibition of ACTH release by glucocorticoids in adrenalectomized rats. Neuroendocrinology 32:38–41

    CAS  PubMed  Google Scholar 

  • Schottelius AJ, Giesen C, Asadullah K, Fierro IM, Colgan SP, Bauman J, Guilford W, Perez HD, Parkinson JF (2002) An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile. J Immunol 169:7063–7070

    Google Scholar 

  • Stoeck M, Riedel R, Hochhaus G, Häfner D, Masso JM, Schmidt B, Hatzelamnn A, Marx D, Bundschuh DS (2004) In vitro and in vivo anti-inflammatory activity of the new glucocorticoid Ciclesonide. J Pharmacol Exp Ther 309:249–258

    CAS  PubMed  Google Scholar 

  • Thompson EB, Tomkins GM, Curran JF (1966) Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A 56:269–303

    Google Scholar 

  • Tonelli G, Thibault L, Ringler I (1965) A bioassay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied steroids. Endocrinology 77:625–630

    CAS  PubMed  Google Scholar 

  • Vayssière BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Hronemeyer H, Resche-Rigon M (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    PubMed  Google Scholar 

  • Vogel HG, Petri W (1985) Comparison of various pharmaceutical preparations of prednicarbate after repeated topical administration to the skin of rats. Arzneimittelforschung 35:939–946

    Google Scholar 

Effects of Steroids on Mechanical Properties of Connective Tissue

  • Vogel G (1968) Untersuchungen zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Fortschr Med 86:666–668

    CAS  Google Scholar 

  • Vogel G, Ther L (1963) Tierexperimentelle Untersuchungen über den Einfluß von Hormonen auf physikalische Eigenschaften von Knochen. Verh Dtsch Ges Pathol 47:167–171, Fischer, Stuttgart

    CAS  PubMed  Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Arzneimittelforschung 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    Google Scholar 

  • Vogel HG (1990) Influence of desmotropic drugs on breaking strength and on viscoelastic properties of rat bone. Relaxation and hysteresis experiments. Acta Ther 16:109–127

    CAS  Google Scholar 

Tensile Strength of Femoral Epiphyseal Cartilage in Rats

  • Ther L, Schramm H, Vogel G (1963) Über die antagonistische Wirkung von Trijodthyronin und Progesteron auf den Prednisoloneffekt am Epiphysenknorpel. Acta Endocrinol 42:29–38

    CAS  PubMed  Google Scholar 

  • Vogel G, Ther L (1964) Über den Einfluß von einigen Hormonen auf mechanisch-physikalische Eigenschaften des Bindeund Stützgewebes. Anatom Anzeig Suppl 115:117–122

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Arzneimittelforschung 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    Google Scholar 

Tensile Strength of Tail Tendons in Rats

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6α-Methylprednisolon und seinen Estern an der Ratte. Acta Endocrinol 50:621–642

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Arzneimittelforschung 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    Google Scholar 

  • Vogel HG (1984) Influence of desmotropic drugs on viscoelastic properties of rat tail tendons. Hysteresis experiments. Arzneimittelforschung 34:213–216

    CAS  PubMed  Google Scholar 

  • Vogel HG (1989) Influence of desmotropic drugs on viscoelastic properties of tail tendons in rats. Acta Ther 15:239–252

    Google Scholar 

  • Vogel HG, Schorning M (1990) Retardation experiments in rat tail tendons. Influence of maturation and age and of desmotropic and anti-inflammatory drugs. Acta Ther 16:3–11

    CAS  Google Scholar 

Tensile Strength of Skin Strips in Rats

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Arzneimittelforschung 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    Google Scholar 

  • Vogel HG (1970a) Beeinflussung der mechanischen Eigenschaften der Haut von Ratten durch Hormone. Arzneimittelforschung 20:1849–1857

    CAS  PubMed  Google Scholar 

  • Vogel HG (1970b) Tensile strength of skin wounds in rats after treatment with corticosteroids. Acta Endocrinol 64:295–303

    CAS  PubMed  Google Scholar 

  • Vogel HG (1971a) Antagonistic effect of aminoacetonitrile and prednisolone on mechanical properties of rat skin. Biochim Biophys Acta 252:580–585

    CAS  PubMed  Google Scholar 

  • Vogel HG (1971b) Zur Wirkung von Hormonen, insbesondere Glucocorticoiden, auf die physikalischen und chemischen Eigenschaften normaler und traumatisierter Haut. Acta Endocrinol Suppl 152:19

    CAS  Google Scholar 

  • Vogel HG (1972) Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim Biophys Acta 286:79–83

    CAS  PubMed  Google Scholar 

  • Vogel HG (1973) Stress relaxation in rat skin after treatment with hormones. J Med 4:19–27

    CAS  PubMed  Google Scholar 

  • Vogel HG (1974) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Connect Tissue Res 2:177–182

    CAS  PubMed  Google Scholar 

  • Vogel HG (1976) Measurement of some viscoelastic properties of rat skin following repeated load. Connect Tissue Res 4:163–168

    CAS  PubMed  Google Scholar 

  • Vogel HG (1977) Strain of rat skin at constant load (creep experiments). Influence of age and desmotropic agents. Gerontology 23:77–86

    CAS  PubMed  Google Scholar 

  • Vogel HG (1981) Influence of desmotropic agents on the directional variations of mechanical properties in rat skin. Bioeng Skin 3:85–97

    Google Scholar 

  • Vogel HG (1986) In vitro test systems for evaluation of the physical properties of the skin. In: Marks R, Plewig G (eds) Skin models. Models to study function and disease of skin. Springer, Berlin/Heidelberg/New York, pp 412–419

    Google Scholar 

  • Vogel HG (1987) Repeated loading followed by relaxation and isorheological behaviour of rat skin after treatment with desmotropic drugs. Bioeng Skin 3:255–269

    CAS  Google Scholar 

  • Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds) Aging and the skin. Raven, New York, pp 227–275

    Google Scholar 

  • Vogel HG (1993a) In vivo recovery of repeatedly strained rat skin after systemic treatment with desmotropic drugs. Skin Pharmacol 6:103–110

    CAS  PubMed  Google Scholar 

  • Vogel HG (1993b) Strength and viscoelastic properties of anisotropic rat skin after treatment with desmotropic drugs. Skin Pharmacol 6:92–102

    CAS  PubMed  Google Scholar 

  • Vogel HG, Denkel K (1985) Influence of maturation and age, and of desmotropic compounds on the mechanical properties of rat skin in vivo. Bioeng Skin 1:35–54

    Google Scholar 

Topical Effects of Glucocorticosteroids on Skin

  • Adachi K, Levine V, Halprin KM, Iizuka K, Yoshikawa K (1976) Multiple forms of cyclic nucleotide phosphodiesterase in pig epidermis. Biochim Biophys Acta 429:498–507

    CAS  PubMed  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneimittelforschung 32:633–638

    Google Scholar 

  • Altmeyer P, Buhles N (1981) Tolerance on corticosteroids? Guinea pig epithelium as an experimental system. Arch Dermatol Res 271:3–9

    CAS  PubMed  Google Scholar 

  • Hartop PJ, Allenby CF, Prottey C (1978) Comparison of barrier function and lipids in psoriasis and essential fatty acid-deficient rats. Clin Exp Dermatol 3:259–267

    CAS  PubMed  Google Scholar 

  • Iizuka H, Ohkuma N, Ohkawara A (1985) Effects of retinoids on the cyclic AMP system of pig skin epidermis. J Invest Dermatol 85:324–327

    CAS  PubMed  Google Scholar 

  • Iwasaki K, Mishima E, Miura M, Sakai N, Shimao S (1995) Effect of RU 486 on the atrophogenic and antiinflammatory effects of glucocorticoids in skin. J Dermatol Sci 10:151–158

    CAS  PubMed  Google Scholar 

  • Kajita S, Iizuka H, Hirokawa M, Tsutsui M, Mizumoto T (1986) Topical application of potent glucocorticoids augments epidermal beta-adrenergic adenylate cyclase response in vivo. Acta Derm Venereol 66:491–496

    CAS  PubMed  Google Scholar 

  • Kapp JF, Gliwitzki B, Josefiuk P, Weishaupt W (1977) Dermale und systemische Nebenwirkungen von Fluocortin-butylester (FCB). Hautreißversuche im Vergleich mit Wirkstoffen aus Handelspräparaten. Arzneimittelforschung 27:2206–2213

    CAS  PubMed  Google Scholar 

  • Lesnik RH, Mezick JA, Capetola R, Kligman LH (1989) Topical all-trans-retinoic acid prevents corticosteroid-induced skin atrophy without abrogating the anti-inflammatory effects. J Am Acad Dermatol 21:168–190

    Google Scholar 

  • Lowe NJ, Stoughton RB (1977) Essential fatty acid deficient hairless mouse: a model of chronic epidermal hyperproliferation. Br J Dermatol 96:155–162

    CAS  PubMed  Google Scholar 

  • Prottey C, Hartop PJ, Black JG, McCormac JI (1976) The repair of impaired epidermal barrier function in rats by the cutaneous application of linoleic acid. Br J Dermatol 94:13–21

    CAS  PubMed  Google Scholar 

  • Schröder HG, Babej M, Vogel HG (1974) Tierexperimentelle Untersuchungen mit dem lokal wirksamen 9α-Fluor-16α-methyl-17-desoxy-prednisolon. Arzneimittelforschung 24:3–5

    PubMed  Google Scholar 

  • Schwartz E, Mezick JA, Gendimenico GJ, Kligman LH (1994) In vivo prevention of corticosteroid-induced skin atrophy by tretinoin in the hairless mouse is accompanied by modulation of collagen, glycosaminoglycans, and fibronectin. J Invest Dermatol 102:241–246

    CAS  PubMed  Google Scholar 

  • Töpert M, Olivar A, Opitz D (1990) New developments in corticosteroid research. J Dermatol Treatment 1(Suppl 3):S5–S9

    Google Scholar 

  • Van den Hoven WE, van den Berg TP, Korstanje C (1991) The hairless mouse as a model for study of local and systemic atrophogenic effects following topical application of corticosteroids. Acta Derm Venereol 71:29–31

    PubMed  Google Scholar 

  • Vogel HG, Petri W (1985) Comparison of various pharmaceutical preparations of prednicarbate after repeated topical administration to the skin of rats. Arzneimittelforschung 35:939–946

    Google Scholar 

  • Woodbury R, Kligman AM (1992) The hairless mouse model for assaying the atrophogenicity of topical corticosteroids. Acta Derm Venereol 72:403–408

    CAS  PubMed  Google Scholar 

  • Wrench R (1980) Epidermal thinning: evaluation of commercial corticosteroids. Arch Dermatol Res 267:7–24

    CAS  PubMed  Google Scholar 

  • Yoshikawa K, Adachi K, Halprin KM, Levine V (1975) Cyclic AMP in skin: effects of acute ischemia. Br J Dermatol 92:249–254

    CAS  PubMed  Google Scholar 

Assay of Topical Glucocorticoid Activity in Transgenic Mice

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1055

    Google Scholar 

  • Hsu-Wong S, Katchman SD, Ledo I, Wu M, Khillan J, Bashir MM, Rosenbloom M, Uitto J (1994) Tissue-specific and developmentally regulated expression of human elastin promoter activity in transgenic mice. J Biol Chem 269:18072–18075

    CAS  PubMed  Google Scholar 

  • Katchman SD, Del Monaco M, Wu M, Brown D, Hsu-Wong S, Uitto J (1995) A transgenic mouse model provides a novel biological assay of topical glucocorticosteroid potency. Arch Dermatol 131:1274–1278

    CAS  PubMed  Google Scholar 

Effect on Epidermal DNA Synthesis

  • Clement M, Hehir M, Phillips H, du Vivier A (1983) The effect on epidermal DNA synthesis of a combination of topical steroid with either dithranol or tar as used for psoriasis. Br J Dermatol 109:327–335

    CAS  PubMed  Google Scholar 

  • Du Vivier A, Marshall AC, Brookes LG (1978) An animal model for evaluating the local and systemic effects of topically applied corticosteroids on epidermal synthesis. Br J Dermatol 98:209–215

    PubMed  Google Scholar 

  • Marks R, Pongsehirun D, Saylan T (1973) A method for the assay of topical corticosteroids. Br J Dermatol 88:69–74

    CAS  PubMed  Google Scholar 

  • Marshall RC, Du Vivier A (1978) Effect on epidermal DNA synthesis of the butyrate esters of clobetasone and clobetasol, and the propionate ester of clobetasol. Br J Dermatol 98:355–359

    CAS  PubMed  Google Scholar 

  • Marshall RC, Burrows M, Brookes LG, du Vivier A (1981) The effect of topical and systemic glucocorticosteroids on DNA synthesis in different tissues of the hairless mouse. Br J Dermatol 105:517–520

    CAS  PubMed  Google Scholar 

Induction of Drug-Metabolizing Enzymes

  • Burton K (1956) A study on the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of desoxyribonucleic acid. Biochem J 62:401–437

    Google Scholar 

  • Finnen MJ, Herdman ML, Shuster S (1984) Induction of drug metabolizing enzymes in the skin by topical steroids. J Steroid Biochem 20:1169–1173

    CAS  PubMed  Google Scholar 

  • Finnen MJ, Herdman ML, Shuster S (1985) Strain differences in the induction of mono-oxygenase activity in mouse skin by topical clobetasol propionate: evidence of a role for the HR locus. J Steroid Biochem 23:431–435

    CAS  PubMed  Google Scholar 

  • Greenlee WF, Poland A (1978) An improved assay of 7-ethoxycoumarin O-deethylase activity: induction of hepatic enzyme activity in C57BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Pharmacol Exp Ther 205:596–606

    CAS  PubMed  Google Scholar 

  • Pohl RJ, Fouts JR (1980) A rapid method for assaying the metabolisms of 7-ethoxyresorufin by microsomal subcellular fractions. Anal Biochem 107:150–155

    CAS  PubMed  Google Scholar 

  • Thompson S, Slaga TJ (1976) The effects of dexamethasone on mouse initiation skin and aryl hydrocarbon hydroxylase. Eur J Cancer 12:363–370

    CAS  PubMed  Google Scholar 

Cornea Inflammation in Rabbits

  • Cantrill HL, Palmberg PF, Zink HA, Waltman SR, Podos SM, Becker B (1975) Comparison of in vitro potency of corticosteroids with ability to raise intraocular pressure. Am J Ophthalmol 79:1012–1017

    CAS  PubMed  Google Scholar 

  • Leibowitz HM, Kupferman A (1974) Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 13:757–763

    CAS  PubMed  Google Scholar 

  • Leibowitz HM, Kupferman A, Stewart HR, Kimbrough RL (1978) Evaluation of dexamethasone acetate as a topical ophthalmic formulation. Am J Ophthalmol 86:418–423

    CAS  PubMed  Google Scholar 

  • Leibowitz HM, Ryan WJ, Kupferman A (1992) Comparative anti-inflammatory efficacy of topical corticosteroids with low glaucoma-inducing potential. Arch Ophthalmol 110:118–120

    CAS  PubMed  Google Scholar 

Endotoxin-Induced Uveitis in Rats

  • Cousins SW, Rosenbaum JT, Guss RB, Egbert PR (1982) Ocular albumin fluorophotometric quantitation of endotoxin-induced vascular permeability. Infect Immun 36:730–736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji F, Sawa K, Kato M, Mibu H, Shirasawa E (1997) The effects of betamethasone derivatives on endotoxin-induced uveitis in rats. Exp Eye Res 64:31–36

    CAS  PubMed  Google Scholar 

Adrenal and Thymus Involution

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Vincent GP, Monteserin MC, Valeiro AS, Burton G, Lantos CP, Galigniana MD (1997) 21-Hydroxy-6,19-oxidoprogesterone: a novel synthetic steroid with specific antiglucocorticoid properties in the rat. Mol Pharmacol 52:749–753

    Google Scholar 

Mineralocorticoid Activity

  • Bülbring E (1937) The standardization of cortical extracts by the use of drakes. J Physiol 89:64–80

    PubMed Central  PubMed  Google Scholar 

  • Dorfman RI (1962) Corticoids. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 325–367

    Google Scholar 

  • Grollman A (1941) Biological assay of adrenal cortical activity. Endocrinology 29:855–861

    Google Scholar 

  • Junkmann K (1955) Über protrahiert wirksame Corticoide. Naunyn-Schmiedebergs Arch Exp Pathol Pharmacol 227:212–213

    CAS  PubMed  Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in hormone research, vol III, Steroidal activity in experimental animals and man. Academic, New York, pp 227–349

    Google Scholar 

  • Tolksdorf S, Battin ML, Cassidy JW, McLeod RM, Warren FH, Perlman PL (1956) Adrenocortical properties of Δ1,4-pregnadiene-17α,21-diol-3,11,20-trione (Meticorten) and Δ1,4-pregnadiene-11β,17α21-triol-3,20-dione (Meticortelone). Proc Soc Exp Biol Med 92:207–214

    CAS  PubMed  Google Scholar 

Electrolyte Excretion

  • Kagawa CM, Shipley EG, Meyer RK (1952) A biological method for determining small quantities of sodium retaining substances. Proc Soc Exp Biol Med 80:281–285

    Google Scholar 

  • Marcus F, Romanoff LP, Pincus G (1952) The electrolyte-excreting activity of adrenocortical substances. Endocrinology 50:286–293

    CAS  PubMed  Google Scholar 

  • Nikisch K, Beier S, Bittler D, Elger W, Laurent H, Losert W, Nishino Y, Schillinger E, Wiechert R (1991) Aldosterone antagonists. 4. Synthesis and activities of steroidal 6,6-ethylene-15,16-methylene 17-spirolactones. J Med Chem 34:2464–2468

    Google Scholar 

  • Simpson SA, Tait JF (1952) A quantitative method for the bioassay of the effect of adrenal cortical steroids on mineral metabolism. Endocrinology 50:150–161

    CAS  PubMed  Google Scholar 

  • Souness GW, Morris DJ (1991) The “mineralocorticoid-like” actions conferred on corticosterone by carbenoxolone are inhibited by the mineralocorticoid receptor (type I) antagonist RU28318. Endocrinology 129:2451–2456

    CAS  PubMed  Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of Δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    Google Scholar 

In Vitro Methods

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987a) Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    Google Scholar 

  • Claire M, Faraj H, Grassy G, Aumelas A, Rondot A, Auzou G (1993) Synthesis of new 11β-substituted spironolactone derivatives. Relationship with affinity for mineralocorticoid and glucocorticoid receptors. J Med Chem 36:2404–2407

    CAS  PubMed  Google Scholar 

  • Davioud E, Fagart J, Souque A, Rafestin-Oblin ME, Marquet A (1996) New steroidal diazo ketones as potential photoaffinity labelling reagents for the mineralocorticoid receptor: synthesis and biological activities. J Med Chem 39:2860–2864

    CAS  PubMed  Google Scholar 

  • Fagart J, Sobrio F, Marquet A (1997a) Synthesis of [3H-2]-21-diazoprogesterone as a potent photoaffinity labelling reagent for the mineralocorticoid receptor. J Labelled Compd Radiopharm 39:791–795

    CAS  Google Scholar 

  • Fagart J, Wurtz J-M, Souque A, Hellal-Levy C, Moras D, Rafestin-Oblin M-E (1997b) Antagonism in the human mineralocorticoid receptor. EMBO J 17:3317–3325

    Google Scholar 

  • Funder JW (1997) Glucocorticoid and mineralocorticoid receptors: biological and clinical relevance. Annu Rev Med 48:231–240

    CAS  PubMed  Google Scholar 

  • Funder JM, Feldman D, Highland E, Edelman IS (1974) Molecular modifications of anti-aldosterone compounds: effects on affinity of spironolactones for renal aldosterone receptors. Biochem Pharmacol 23:1493–1501

    CAS  PubMed  Google Scholar 

  • Grassy G, Fagart J, Calas B, Adenot M, Rafestin-Oblin ME, Auzou G (1997) Structure-activity relationships of steroids with anti-mineralocorticoid activity. Eur J Med Chem 32:869–879

    CAS  Google Scholar 

  • Jausons-Loffreda N, Balaguer P, Auzou G, Pons M (1994) Development of specific bioluminescent in vitro assays for selecting potential antimineralocorticoids. J Steroid Biochem Mol Biol 49:31–38

    CAS  PubMed  Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    CAS  PubMed  Google Scholar 

  • Pasqualini JR, Sumida CH (1977) Mineralocorticoid receptors in target tissues. In: Pasqualini JR (ed) Receptors and mechanism of action of steroid hormones. Part II. Dekker, New York, pp 399–511

    Google Scholar 

  • Raynaud JP (1978) The mechanism of action of antihormones. In: Jacob J (ed) Advances in pharmacology and therapeutics, vol 1, Receptors. Pergamon, Oxford, pp 259–278

    Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for antihormones by receptor studies. J Steroid Biochem 6:615–622

    CAS  PubMed  Google Scholar 

  • Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979) Receptor binding as a tool in the development of new bioactive steroids. In: Ariëns EJ (ed) Drug design, vol VIII. Academic, New York, pp 169–214

    Google Scholar 

  • Rogerson FM, Dimopoulos N, Sluka P, Chu S, Curtis AJ, Fuller PJ (1999) Structural determinants of aldosterone binding selectivity in the mineralocorticoid receptor. J Biol Chem 274:36305–36311

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao YZ, Smith BJ, Dimopoulos N, Fuller PJ (2003) Determinants of spironolactone binding specificity in the mineralocorticoid receptor. J Mol Endocrinol 31:573–582

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao Y, Smith BJ, Fuller PJ (2004) Differences in the determinants of eplerenone, spironolactone, and aldosterone binding to the mineralocorticoid receptor. Clin Exp Pharmacol Physiol 31:704–709

    CAS  PubMed  Google Scholar 

  • Rupprecht R, Reul JMHM, van Steensel B, Spengler D, Söder M, Berning B, Holsboer F, Damm K (1993a) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol Mol Pharmacol Sect 247:145–154

    CAS  Google Scholar 

  • Rupprecht R, Arriza JL, Spengler D, Reul JMHM, Evans RM, Holsboer F, Damm K (1993b) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 7:597–603

    Google Scholar 

  • Sutano W, de Kloet ER (1991) Mineralocorticoid ligands: biochemical, pharmacological, and clinical aspects. Med Res Rev 11:617–639

    Google Scholar 

  • Wambach G, Higgins JR (1978) Antimineralocorticoid action of progesterone in the rat: correlation of the effect on electrolyte excretion and interaction with mineralocorticoid receptors. Endocrinology 102:1686–1693

    CAS  PubMed  Google Scholar 

  • Wehling M (1994) Novel aldosterone receptors: specificity-conferring mechanism at the level of the cell membrane. Steroids 59:160–163

    CAS  PubMed  Google Scholar 

Transactivation Assay for Mineralocorticoids

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 6:2237–2240

    Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTV-CAT into mammalian cells: inhibition of CAT expression by antiandrogens. J Steroid Biochem Mol Biol 42:787–793

    Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1055

    Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    Google Scholar 

  • Lim-Tio SS, Keightley M-C, Fuller PF (1997) Determinants of specificity of transactivation by the mineralocorticoid or glucocorticoid receptor. Endocrinology 138:2537–2543

    CAS  PubMed  Google Scholar 

  • Lombès M, Kenouch S, Souque A, Farman N, Rafestin-Oblin ME (1994) The mineralocorticoid receptor discriminates aldosterone from glucocorticoids independently of the 11β-hydroxysteroid dehydrogenase. Endocrinology 135:834–840

    PubMed  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann N Y Acad Sci 761:311–335

    Google Scholar 

  • Rupprecht R, Reul JMHM, van Steensel B, Spengler D, Söder M, Berning B, Holsboer F, Damm K (1993a) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands Eur J Pharmacol Mol Pharmacol Sect 247:145–154

    Google Scholar 

  • Rupprecht R, Arriza JL, Spengler D, Reul JMHM, Evans RM, Holsboer F, Damm K (1993d) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 7:597–603

    CAS  PubMed  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnology 12:1003–1007

    Google Scholar 

Anti-Mineralocorticoid Activity

  • Cutler GB Jr, Pita JC Jr, Rifka SM, Menard RH, Sauer MA, Loriaux DL (1978) SC 25152: a potent mineralocorticoid antagonist with reduced affinity for the 5α-dihydrotestosterone receptor of human and rat prostate. J Clin Endocrinol Metab 447:171–175

    Google Scholar 

  • Cutler GB Jr, Sauer MA, Lorioux DL (1979) SC 25152: a potent mineralocorticoid receptor antagonist with decreased antiandrogenic activity relative to spironolactone. J Pharmacol Exp Ther 209:144–146

    CAS  PubMed  Google Scholar 

  • De Gasparo M, Joss U, Ramjoué HP, Whitebread SE, Haenni H, Schenkel L, Kraehenbühl C, Biollaz M, Grob J, Schmidlin J, Wieland P, Wehrli HU (1987) Three new epoxy-spironolactone derivatives: characterization in vivo and in vitro. J Pharmacol Exp Ther 240:650–656

    PubMed  Google Scholar 

  • Fraccarollo D, Galuppo P, Schmidt I, Ertl G, Bauersachs J (2005) Additive amelioration of left ventricular remodeling and molecular alterations by combined aldosterone and angiotensin receptor blockade after myocardial infarction. Cardiovasc Res 67:97–105

    CAS  PubMed  Google Scholar 

  • Garthwaite SM, McMahon EG (2004) The evolution of aldosterone antagonists. Mol Cell Endocrinol 217:27–31

    CAS  PubMed  Google Scholar 

  • Gómez-Sánchez EP, Fort CM, Gómez-Sánchez CE (1990) Intracerebroventricular infusion of RU28318 blocks aldosterone-salt hypertension. Am J Physiol 258:E482–E484

    PubMed  Google Scholar 

  • Hu X, Li S, McMahon EG, Lala D, Rudolph AE (2005) Molecular mechanisms of mineralocorticoid receptor antagonism by eplerenone. Mini Rev Med Chem 5:709–718

    CAS  PubMed  Google Scholar 

  • Kagawa CM (1960) Blocking the renal electrolyte effects of mineralocorticoids with an orally active steroidal spironolactone. Endocrinology 67:125–132

    CAS  PubMed  Google Scholar 

  • Kagawa CM, Brown EA (1960) Ability of isopregnenolone-21-carboxylates to block renal effects of desoxycorticosterone and aldosterone in rats. Proc Soc Exp Biol Med 105:648–650

    CAS  PubMed  Google Scholar 

  • Kagawa CM, Shipley EG, Meyer RK (1952) A biological method for determining small quantities of sodium retaining substances. Proc Soc Exp Biol Med 80:281–285

    Google Scholar 

  • Losert W, Casals-Stenzel J, Buse M (1985) Progestogens with antimineralocorticoid activity. Arzneimittelforschung 35:459–471

    CAS  PubMed  Google Scholar 

  • Losert W, Bittler D, Buse M, Casals-Stenzel J, Haberey M, Laurent H, Nikisch K, Schillinger E, Wiechert L (1986) Mespirone and other 15,16-methylene-17-spirolactones, a new type of steroidal aldosterone antagonists. Arzneimittelforschung 36:1583–1600

    CAS  PubMed  Google Scholar 

  • Masson S, Staszewsky L, Annoni G, Carlo E, Arosio B, Bai A, Calabresi C, Martinoli E, Salio M, Fiordaliso F, Scanziani E, Rudolph AE, Latini R (2004) Eplerenone, a selective aldosterone blocker, improves diastolic function in aged rats with small-to-moderate myocardial infarction. J Card Fail 10:433–441

    CAS  PubMed  Google Scholar 

  • Sakauye C, Feldman D (1976) Agonist and antagonist activities of spirolactones. Clin Res 24:135A

    Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of Δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    Google Scholar 

  • Wahed MII, Watanabe K, Ma M, Yamaguchi K, Takahashi T, Tachikawa H, Kodame M, Aizawa Y (2005) Effects of eplerenone, a selective aldosterone blocker, on the progression of left ventricular dysfunction and remodeling in rats with dilated cardiomyopathy. Pharmacology 73:81–88

    CAS  PubMed  Google Scholar 

  • Wang D, Liu YH, Yang XP, Rhaleb NE, Xu H, Peterson E, Rudolph AE, Carretero OA (2004) Role of a selective aldosterone blocker in mice with chronic heart failure. J Card Fail 10:67–73

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sandow, J. (2015). Adrenal Steroid Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics