Skip to main content

Assays for Insulin and Insulin-Like Regulation of Energy Metabolism

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 539 Accesses

Abstract

Accumulating experimental evidence indicates that dysregulation of energy metabolism is a fundamental process that is associated with the phenotype of metabolic disorders, in particular type II diabetes and obesity. Many current antidiabetic drugs (metformin, glitazones) target the pathways that control glucose metabolism. Very recently, technologies (Bionas Inc., Germany; Seahorse Bioscience Inc., USA) have been developed that manage to rapidly profile the bioenergetic pathways in a variety of cell types. These include alterations caused by drugs that target the specific metabolic pathways the cell uses to ensure its energy demands, normal metabolic functions, and survival. These technologies allow a more detailed analysis of the link between glucose/lipid metabolism and energy metabolism, including interference of one or the other by compounds/drug candidates, as well as the screening for or characterization of drug candidates affecting or leaving unaffected those pathways. For this, both the oxygen consumption rate (OCR), which primarily reflects mitochondrial respiration, and the extracellular acidification rate (ECAR), which primarily reflects lactic acid production (glycolysis), are measured using the Bionas or Seahorse technology. Furthermore, the OCR and ECAR readings allow to profile the metabolic sensitivities and degree of inhibition/stimulation of a number of cell lines relevant for the study of glucose and lipid metabolism and its regulation toward modulators of anaerobic and aerobic energy metabolism (e.g., phloretin, 2-deoxyglucose, dinitrophenol). Analysis of the sensitivities of the cell lines to these modulators provides insights into their bioenergetic preferences/dependencies and their global physiological responses to the modulation. This characterization may be useful for the selection of cell lines appropriate for use in screening for compounds with antiproliferative activity (ECAR for anaerobic energy metabolism; Boros et al. 2002) as well as insulin-like metabolic activity (OCR for aerobic energy metabolism; Wolf et al. 1997), with regard to sensitivity and responsiveness of their energy metabolism and the relevant bioenergetic pathways (Ehret et al. 2001). During the last decade, multiparametric cellular microelectronic interdigitated biosensor chips for microphysiological and screening applications with living cells have been developed (Ehret et al. 2001; Lehmann et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Determination of Oxygen Consumption and Extracellular Acidification Rates; Omics-Technologies

  • Boros LG, Cascante M, Lee WN (2002) Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today 7:364–372

    Article  CAS  PubMed  Google Scholar 

  • Davidov E, Clish CB, Oresic M, Meys M, Stochaj W, Snell P, Lavine G, Londo TR, Adourian A, Zhang X, Johnston M (2004) Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. Omics 8:267–288

    Article  CAS  PubMed  Google Scholar 

  • Ehret R, Baumann W, Brischwein M, Schwinde A, Wolf B (1998) On-line control of cellular adhesion with impedance measurements using interdigitate electrode structures. Med Biol Eng Comput 36:365–370

    Article  CAS  PubMed  Google Scholar 

  • Ehret R, Baumann W, Brischwein M, Lehmann M, Henning T, Freund I (2001) Multiparametric cellular biosensor chips for screening applications. Fresenius J Anal Chem 369:30–35

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers-acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Bonney SA, Mann C, Hebbachi AM, Gibbons GF, Nicholson JK, Shoulders CC, Scott J (2004) An integrative reverse functional genomic and metabolic approach to understanding orotic acid induced fatty liver. Physiol Genomics 17:140–149

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG (2006) Metabolomics, a “systems” contribution to pharmaceutical discovery and drug development. Drug Discov World Spring 37:39–46

    Google Scholar 

  • Harrigan GG, Goodacre R (eds) (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic, Boston

    Google Scholar 

  • Hellerstein MK (2003) In vivo measurement of fluxes through metabolic pathways; the missing link in functional genomics and pharmaceutical research. Annu Rev Nutr 23:379–402

    Article  CAS  PubMed  Google Scholar 

  • Krul E, Butteiger D, Flickinger A, Harrigan GG, Wiest MM, German BG, Watkins SM (2006) Lipid metabolome analysis of the LDL receptor null mouse (in preparation)

    Google Scholar 

  • Lehmann M, Baumann W, Brischwein M, Ehret R, Kraus M, Schwinde A, Bitzenhofer M, Freund I, Wolf B (2000) Noninvasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications. Biosens Bioelectron 15:117–124

    Article  CAS  PubMed  Google Scholar 

  • Lehmann M, Baumann W, Brischwein M, Gahle HJ, Freund I, Ehret R, Drechsler S, Palzer H, Kleintges M, Sieben U, Wolf B (2001) Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosens Bioelectron 16:195–203

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan S, Harrigan GG, Goodacre R (eds) (2005) Metabolome analyses: strategies for systems biology. Springer Science+Business Media, New York

    Google Scholar 

  • Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  CAS  PubMed  Google Scholar 

  • Wolf B, Brischwein M, Baumann W, Ehret R, Kraus M (1997) Monitoring of cellular signalling and metabolism with modular sensor-technique. The Physio Control-Microsystem (PCM). Biosens Bioelectron 13:501–509

    Article  Google Scholar 

Metabolomics and Lipidomics of Adipose Tissue

  • de Hoffmann E, Stroobant P (2001) Mass spectrometry: principles and applications. Wiley, New York

    Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Hinault C, Van Obberghen E, Mothe-Satney I (2006) Role of amino acids in insulin signaling in adipocytes and their potential to decrease insulin resistance of adipose tissue. J Nutr Biochem 17:374–378

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa M, Oresic M (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinforma 6:179 (electronic resource)

    Article  Google Scholar 

  • Katajamaa M, Miettinen J, Oresic M (2006) Mzmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:19–199

    Article  Google Scholar 

  • Lynch CJ, Patson BJ, Anthony J, Vaval A, Jeffeson LS, Vary TC (2002) Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283:E503–E513

    Article  CAS  PubMed  Google Scholar 

  • Medina-Gomez G, Virtue S, Lelliott C, Boiani R, Cambell M, Christodoulides C et al (2005) The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2-isoform. Diabetes 54:1706–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oresic M, Vidal-Puig A, Hanninen V (2006) Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn 6:575–585

    Article  CAS  PubMed  Google Scholar 

  • Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72

    Article  CAS  PubMed  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    Article  CAS  PubMed  Google Scholar 

  • von der Greef J, Stroobant P, van der Heijden R (2004) The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 8:559–565

    Article  PubMed  Google Scholar 

Proteomics of Adipose Tissue

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Article  CAS  PubMed  Google Scholar 

  • Anderson JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO Rep 7:874–879

    Article  Google Scholar 

  • Chen X, Pannell LK, Cushman S, Hess S (2005) Quantitative proteome analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-MS/MS approach. J Proteome Res 4:570–577

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006a) Challenges and opportunities in proteomics data analysis. Mol Cell Proteomics 5:1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006b) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  • Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H et al (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics 1:213–222

    Google Scholar 

  • Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  CAS  PubMed  Google Scholar 

  • Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P (2000) Quantification of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom 14:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL (2006) ProRata: a quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation. Anal Chem 78:7121–7131

    Article  CAS  PubMed  Google Scholar 

  • Reynolds KJ, Yao X, Fenselau C (2002) Proteolytic 18O labeling for comparative proteomics: evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1:27–33

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz WX, Mann M (2004) A novel proteomic screen for peptide-protein interactions. J Biol Chem 279:10756–10764

    Article  Google Scholar 

  • Sidhu RS (1979) Two-dimensional electrophoretic analyses of proteins synthesized during differentiation of 3T3-L1 preadipocytes. J Biol Chem 254:11111–11118

    CAS  PubMed  Google Scholar 

  • Spiegelman BM, Green H (1980) Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem 255:8811–8818

    CAS  PubMed  Google Scholar 

  • Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15:2456–2465

    Article  CAS  PubMed  Google Scholar 

  • Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  CAS  PubMed  Google Scholar 

  • Tsuruga H, Kumagai H, Kojima T, Kitamura T (2000) Identification of novel membrane and secreted proteins upregulated during adipocyte differentiation. Biochem Biophys Res Commun 272:293–297

    Article  CAS  PubMed  Google Scholar 

  • Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  Google Scholar 

  • Wang P, Mariman E, Keijer J, Bouwman F, Noben J-P, Robben J, Renes J (2004) Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci 61:2405–2417

    CAS  PubMed  Google Scholar 

  • Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, Nicoloro S et al (2003) Mitochondrial biosynthesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1985–1994

    Article  Google Scholar 

  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842

    Article  CAS  PubMed  Google Scholar 

RNA Isolation and Real-Time Quantitative RT-PCR

  • Brady G, Iscove NN (1993) Construction of cDNA libraries from single cells. Methods Enzymol 225:611–623

    Article  CAS  PubMed  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  PubMed  Google Scholar 

  • Frühbeck G (2008) Overview of adipose tissue and its role in obesity and metabolic disorders. In: Yang K (ed) Adipose tissue protocols. Humana, Totowa, pp 1–22

    Chapter  Google Scholar 

  • Guan H, Arany E, van Beck JP, Chamson-Reig A, Thyssen S, Hill DJ, Yang K (2005) Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab 288:E663–E673

    Article  CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  • Laclaustra M, Corella D, Ordovas JM (2007) Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis 17:125–139

    Article  CAS  PubMed  Google Scholar 

  • Murphy RM, Watt KK, Cameron-Smith D, Gibbons CJ, Snow RJ (2003) Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiol Genomics 12:163–174

    Article  CAS  PubMed  Google Scholar 

  • Rappolee DA, Wang A, Mark D, Werb Z (1989) Novel method for studying mRNA phenotypes in single or small numbers of cells. J Cell Biochem 39:1–11

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experiment treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Steuerwald N, Cohen J, Herrera RJ, Brenner CA (1999) Analysis of gene expression in single oocytes and embryos by real-time rapid cycle fluorescence monitored RT-PCR. Mol Hum Reprod 5:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    CAS  PubMed  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  PubMed  Google Scholar 

  • Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60:329–339

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:154–160

    Article  Google Scholar 

  • Zhong H, Simons JW (1999) Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Müller, G. (2015). Assays for Insulin and Insulin-Like Regulation of Energy Metabolism. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_155-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_155-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics