Skip to main content

C4 Fouling of Heat Exchanger Surfaces

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

In most industrial processes, heat exchanging fluids contain certain amounts of dissolved or suspended material or provide conditions favorable for the growth of biological organisms. Design and operation of heat exchangers are still to a major extent determined by the process-related formation of deposits on the heat transfer surfaces, i.e., fouling. Since the thermal conductivity of such deposits is low, see Table 1, their resistance to heat transfer may well exceed that of the clean fluids, resulting in significantly reduced heat exchanger performance.

C4. Table 1 Thermal conductivity of various deposits

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

7 Bibliography

  1. Steinhagen R, Müller-Steinhagen HM, Maani K (1993) Fouling problems and fouling costs in New Zealand industries. Heat Transfer Eng 14(1):19–30

    Article  Google Scholar 

  2. Steinhagen R, Müller-Steinhagen HM, MaaniK (1990) Heat exchanger applications, fouling problems and fouling costs in New Zealand Industries. Ministry of Commerce Report RD8829 1–116

    Google Scholar 

  3. Garrett-Price BA, et al. (1985) Fouling of heat exchangers – characteristics, costs, prevention, control and removal. Noyes Publications, Park Ridge, New Jersey

    Google Scholar 

  4. TEMA (1978) Standards of the Tubular Exchanger Manufacturers Association, 6th edn., New York

    Google Scholar 

  5. Marriott J (1971) Where and how to use Plate Heat Exchangers. Chem Eng 78(8):127–134

    Google Scholar 

  6. Weierman RC (1982) Design of heat transfer equipment for gas-side fouling service. In: Marner WJ, Webb RL (eds) Workshop on an assesment of Gas-Side Fouling in Fossil Fuel Exhaust Environments. Publication 82–67, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

    Google Scholar 

  7. Palen JW (1983) Shell and tube re-boiler. Sect. 3.7.8, Heat Exchanger Design Handbook. Hemisphere Publ. Corp

    Google Scholar 

  8. Chenoweth JM (1987) General design of heat exchangers for fouling conditions. In the NATO Advanced Study Institute on Advances in Fouling Science and Technology, Alvor, Portugal

    Google Scholar 

  9. Bansal B, Chen XD, Müller-Steinhagen H (1997) Effect of suspended particles on calcium sulphate fouling in plate heat exchangers. ASME J Heat Transfer 119:568–574

    Article  Google Scholar 

  10. Blöchl R, Müller-Steinhagen HM (1990) Influence of particle size and particle/liquid combination on particulate fouling in heat exchangers. Can J Chem Eng 68(4):585–591

    Article  Google Scholar 

  11. Epstein N (1983) Fouling in heat exchangers. In: Taborek J, Hewitt G (eds) Heat exchanger theory and practice, McGraw-Hill, New York

    Google Scholar 

  12. Müller-Steinhagen H (2000) Modellierung der Ablagerungsbildung in Wärmeübertragern – Vom Laborversuch zur Produktionsanlage – Berichte zur Energie- und Verfahrenstechnik Vol 20.1, ISBN 3-931901-14-9

    Google Scholar 

  13. Taborek J (1987) Private communications

    Google Scholar 

  14. Martin H (1988) Wärmeübertrager. Georg Thieme, Verlag Stuttgart

    Google Scholar 

  15. Thackery PA (1980) The cost of fouling in heat exchanger plant. Effluent and Water Treatment J 20(3):112–115

    Google Scholar 

  16. Pritchard AM (1987) The economics of fouling. In: Melo LF, Bott TR, Bernardo CA (eds) Fouling science and technology, NATO ASI Series E, vol. 145. Kluwer, Amsterdam

    Google Scholar 

  17. Woods DR, Anderson SJ, Norman SL (1976) Evaluation of capital-cost data – heat-exchangers. Can J Chem Eng 54(6):469–488

    Article  Google Scholar 

  18. Sart P, Eimer K (1979) Control of scaling or fouling effects in cooling water system for improvement of heat exchanger efficiency, Paper presented at international meeting on industrial heat exchangers and heat recovery, Liege, Belgium

    Google Scholar 

  19. Hewitt G, Müller-Steinhagen H (2000) Heat exchanger fouling in crude oil distillation units. ESDU Data Item 00016:1–80

    Google Scholar 

  20. Hewitt G, Müller-Steinhagen, H (2003) Fouling in cooling water systems using seawater. ESDU Data Item 03004, pp 1–100, International Ltd., London

    Google Scholar 

  21. Hewitt G, Müller-Steinhagen H (2007) Fouling in cooling systems using fresh water. ESDU Data Item 08002, International Ltd., London, pp 1–172

    Google Scholar 

  22. Bennett CA, Kistler RS, Lestina TG, et al. (2007) Improving heat exchanger designs. CEP 103(4):40–45

    Google Scholar 

  23. Aguirre FJ ( 2006) Reviewing the use of fouling factors in heat exchanger design. http://www.ChemicalProcessing.com. Cited 15 February 2000

  24. Bennett CA (2005) Using a non-traditional approach to account for crude oil fouling in heat exchangers. http://www.ChemicalProcessing.com. Cited 30 September 2005

  25. Nesta JM, Bennett CA (2005) Fouling mitigation by design. The 6th international conference on petroleum phase behavior and fouling, Amsterdam, The Netherlands

    Google Scholar 

  26. Nesta J, Bennett CA (2004) Reduce fouling in shell-and-tube heat exchangers. Hydrocarb Process 83(7):77–82

    Google Scholar 

  27. Knudsen JG (1983) Fouling in heat exchangers. Heat Exchanger Design Handbook Hemisphere Publications Corporation, Washington, DC

    Google Scholar 

  28. TUBEC Tubes. AST, Avesta Sandvik Tube AB, Helmond, Holland

    Google Scholar 

  29. Bornhorst A, Zhao Q, Müller-Steinhagen H (1999) Reduction of scale formation by Ion implantation and magnetron sputtering on heat transfer surfaces. Heat Transfer Eng 20(2):6–14

    Article  Google Scholar 

  30. Müller-Steinhagen H, Zhao Q, Helalizadeh A, et al. (2000) The effect of surface properties on CaSO4 scale formation during convective heat transfer and subcooled flow boiling. Can J Chem Eng 78:12–20

    Article  Google Scholar 

  31. Förster M, Augustin W, Bohnet M (1999) Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem Eng Process 38:449–461

    Article  Google Scholar 

  32. Zhao Q, Müller-Steinhagen H (2001) Intermolecular and adhesion forces of deposits on modified heat transfer surfaces. In Proceedings of UEFC on heat exchanger fouling (Session II), Davos, Switzerland

    Google Scholar 

  33. Zhao Q, Liu Y, Müller-Steinhagen H, Liu G (2002) Graded Ni-P-PTFE coatings and their potential applications. Surface and Coatings Technology 155:279–284

    Article  Google Scholar 

  34. Paikert P (1983) Verschmutzung von Kondensatoren und Kühltürmen. GVC Weihnachtstagung 371–390

    Google Scholar 

  35. Gilmour CH (1965) No fooling – no fouling. Chem Eng Prog 61(7):49–54

    Google Scholar 

  36. Kral D, Stehlik P, van der Ploeg HJ, et al. (1996) Helical baffles in shell and tube heat exchangers, Part I: Experimental verification. Heat Transfer Eng 17(1):93–101

    Article  Google Scholar 

  37. http://www.embaffle.com/

  38. Butterworth D, Guy AR, Welkey JJ (1998) Design and application of twisted-tube exchangers. Brown Fintube, London

    Google Scholar 

  39. Müller-Steinhagen H (2001) Numerical investigation on plate heat exchanger design. UEF Conference on Compact Heat Exchangers, Davos, Switzerland

    Google Scholar 

  40. Klaren DG (1987) Fluid bed heat exchanger. CPP Edition, Europe

    Google Scholar 

  41. Cooper A, Suitor JW, Usher JD (1980) Cooling water fouling in plate heat exchangers. Heat Transfer Eng 1(3):50–55

    Article  Google Scholar 

  42. Novak L (1982) Comparison of the Rhine river and the Öresund sea water fouling and its removal by chlorination. J Heat Transfer 104:663–670

    Article  Google Scholar 

  43. Zettler HU, Weiss M, Zhao Q, et al. (2005) Influence of surface properties/characteristics on fouling in plate heat exchangers. Heat Transfer Eng 26:3–17

    Article  Google Scholar 

  44. Delplace F, Leuliet JC, Bott TR (1997) Influence of plate geometry on fouling of plate heat exchangers by whey protein solutions. In: Panchal CB, Bott TR, Somerscales, FC, et al. (eds) Fouling mitigation of industrial heat-exchange equipment. Begell House, Redding, pp 565–576

    Google Scholar 

  45. Masri MA, Cliffe KR (1997) Investigation into the fouling of a plate and frame heat exchanger. In: Panchal CB, Bott TR, Somerscales FC, et al. (eds) Fouling mitigation of industrial heat-exchange equipment. Begell House, Redding, pp 549–561

    Google Scholar 

  46. Pritchard AM, Clarke RH, de Block MX (1992) Fouling of small passages in compact heat exchangers. In: Bott et al. (eds) Fouling mechanisms: Theoretical and practical aspects. Eurotherm Semin 23:47–56

    Google Scholar 

  47. Kew P (1991) An investigation into fouling of a printed circuit heat exchanger. Future Practice Report 13, Energy Efficiency Enquiries Bureau, Harwell, London

    Google Scholar 

  48. Coulson JM, Richardson JF, Sinnott RK (1985) Chemical Engineering, Volume 6. Pergamon Press

    Google Scholar 

  49. Müller-Steinhagen H (2000) Heat exchanger fouling – mitigation and cleaning technologies. Publico Publications, ISBN 0 85295 436(0):1–382

    Google Scholar 

  50. DUBBEL (1974) Taschenbuch für den Maschinenbau, vol. 2, 13th edn., pp 87–94

    Google Scholar 

  51. Müller-Steinhagen H (1999) Cooling water fouling in heat exchangers. Adv Heat Transfer 33:415–496

    Article  Google Scholar 

  52. Harris A, Marshall A (1981) The evaluation of scale control additives. Conference on progress in the prevention of fouling in industrial plant, University of Nottingham, Nottingham

    Google Scholar 

  53. Krisher AS (1978) Raw water treatment in the CPI. Chem Eng 79–98

    Google Scholar 

  54. Haluska JL (1976) Process fouling control by effective antifoulant selection. Paper No. 153 presented at Corrosion/76, Houston

    Google Scholar 

  55. Watkinson AP (1988) Critical review of organic fluid fouling: Final Report No. ANL/CNSV-TM-208 Argonne National Laboratory, III

    Google Scholar 

  56. Gillies WV (1979) Fouling and its control by chemical additives in hydrocarbon streams. Proceedings of the Institute of Corrosion Science and Technology, and Institute of Chemical Engineering Fouling Conference, University of Surrey, Guildford, London

    Google Scholar 

  57. Mayo FR, Miller AA (1856) The oxidation of unsaturated compounds. The oxidation of styrene. J Am Chem Soc 78:1017–1022

    Google Scholar 

  58. Mayo FR, Miller AA (1956) The oxidation of unsaturated compounds. Reaction of styrene peroxide. J Am Chem Soc 78:1023–1034

    Article  Google Scholar 

  59. Mayo FR, Miller AA, Russel GA (1958) The oxidation of unsaturated compounds. J Am Chem Soc 80:2500–2507

    Article  Google Scholar 

  60. Mayo FR (1958) The oxidation of unsaturated compounds. The effect of oxygen pressure on the oxidation of styrene. J Am Chem Soc 80:2465–2480

    Article  Google Scholar 

  61. Mayo FR (1986) Gum and deposit formation from jet turbine and diesel fuels at 130°C. Ind Eng Chem Prod Res Dev 25:333–348

    Article  Google Scholar 

  62. Mayo FR, Stavinoha LL, Lee GH (1988) Source of jet fuel thermal oxidation tester deposits from an oxidized JP-8 fuel. Ind Eng Chem Res 27(2):362–363

    Article  Google Scholar 

  63. Dugan CP, Van Nostrand WL, Jr. Haluska JL (1978) How antifoulants reduce the energy consumption of refineries. Chem Eng Prog 74:53–57

    Google Scholar 

  64. Novak L (1982) Comparison of the Rhine river and the Öresund sea water fouling and its removal by chlorination. J Heat Transfer 104:663–670

    Article  Google Scholar 

  65. Miller PC, Bott TR (1979) The removal of biological films using sodium hypochloride. Internaional Chemical Engineering Conference on Fouling Science or Art? Surrey University, Guildford, England

    Google Scholar 

  66. Birchall GA (1981) Achieving microbiolocal control in open recirculating cooling systems. Conference on progress in the prevention of fouling in industrial plant. University of Nottingham, Nottingham

    Google Scholar 

  67. Grier JC, Christensen RJ (1975) Microbiological control in alkaline cooling water systems. Paper presented at the national association of corrosion engineers annual meeting, Toronto, Canada

    Google Scholar 

  68. Waite TD, Fagan JR (1980) Summary of biofouling control alternatives. Condenser Biofouling Control, Publisher J. Garey, Ann Arbor Science

    Google Scholar 

  69. Grade R, Thomas BM (1979) The influence and control of algae in industrial cooling systems. International Chemical Engineering Conference on Fouling Science or Art? Surrey University, Guildford, England

    Google Scholar 

  70. Knudsen J (1991) Conquer cooling-water fouling. Chem Eng Prog 87(4):42–48

    Google Scholar 

  71. Betz Laboratories (1976) Handbook of industrial water conditioning, 7th edn Trevose, PA, pp 24–29

    Google Scholar 

  72. Drew Chemical Corporation (1977) Principles of industrial water treatment, 1st edn Boonton, NJ, pp 99–103

    Google Scholar 

  73. Nalco Chemical Comp (1979) Nalco Water Handbook, 1st edn. McGraw-Hill, New York

    Google Scholar 

  74. Knudsen JG, Jou HY, Herman KW (1985) Heat transfer characteristics of an electrically heated annular test section for determining fouling resistances. DREW Ind. Div., Report CWI-TP-18

    Google Scholar 

  75. SPIRELF System (1987) American European consulting company. Houston, TX

    Google Scholar 

  76. HEATEX Radial Mixing Element: A patented system developed by CAL GAVIN LTD., Birmingham, England

    Google Scholar 

  77. Haquet I (1994) TURBOTAL-system for reduced fouling in crude oil heat exchangers. Proceedings engineering foundation conference on heat exchanger fouling, Snells Beach, California

    Google Scholar 

  78. KALVO VOGLER GMBH: Automatisches Reinigungssystem für Kondensatoren und Röhrenwärmeaustauscher

    Google Scholar 

  79. TAPROGGE Report 84–15 (1984) Test of TAPROGGE condenser tube cleaning system to prevent silica and calcium carbonate scaling. TAPROGGE GmbH

    Google Scholar 

  80. Simon S, Zachay R (2000) Clyde Bergemann cleaning technology for heat exchangers In: heat exchanger fouling – mitigation and cleaning technologies Publico Publications, ISBN 0 85295 436 0:1–382

    Google Scholar 

  81. Parkinson G, Price W (1984) Getting the most out of cooling water. Chem Eng 91(1):22–25

    Google Scholar 

  82. Donaldson J, Grimes S (1988) Lifting the scale from our pipes. New Sci 18:43–46

    Google Scholar 

  83. Hasson D, Bramson D (1985) Effectiveness of magnetic water treatment in suppressing CaCO3 scale deposition. Ind Eng Chem Process Des Dev 24:588–592

    Article  Google Scholar 

  84. Söhnel O, Mullin J (1988) Some comments on the influence of a magnetic field on crystalline scale formation. Chem Ind 6:356–358

    Google Scholar 

  85. Cho YI, Lee SH, Kim W, et al. (2003) Physical water treatment for the mitigation of mineral fouling in cooling-tower water applications. In: Watkinson AP, Müller-Steinhagen H, Reza Malayeri M (eds) Heat exchanger fouling and cleaning: Fundamentals and applications, ECI Symposium Series, volume RP1. http://services.bepress.com/eci/heatexchanger/4

  86. French MA (1981) Chemical cleaning in practice. Conference on progress in the prevention of fouling in industrial plant. Universität Nottingham, Nottingham

    Google Scholar 

  87. Roebuck AH, Bennett CA (1977) Heat transfer payback is a key to chemical cleaning choice. Oil Gas J 9:93–96

    Google Scholar 

  88. Hovland AW (1978) Effective condenser cleaning improves system heat rate. P ow Eng 82:49–50

    Google Scholar 

  89. Conco Systems, Inc., 135 Sylvan St., Verona, PA 15147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Hans Müller-Steinhagen (2010). C4 Fouling of Heat Exchanger Surfaces. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_7

Download citation

Publish with us

Policies and ethics