Skip to main content

E1 Steady-State Heat Conduction

  • Reference work entry
  • First Online:
  • 25k Accesses

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

Conduction heat transfer is the transfer of energy caused by interaction between adjacent molecules of a stagnant substance, gaseous, liquid, or solid, subject to a temperature difference between some solid boundaries, which means a difference of molecular kinetic energy. Unless they are confined to small spaces, gases and liquids tend to move when heated and transfer heat by the regime of “natural convection.” Thus, heat conduction mostly occurs in solid bodies. The basic equation for the heat flow \(\dot Q\) (rate of heat transferred) is the Fourier law of heat conduction equation (1):

$$\dot Q = - \lambda { A}{{{\rm d}T } \over {{\rm d}x}}.$$
((1))

With \(\lambda \) being the thermal conductivity of the material, A the area of the body normal to the heat flow in the direction of x (one dimensional flow), and \({\rm {d}}T /{\rm {d}}x\) the temperature gradient. If there is no dependence on time, there is a steady flow i.e., steady conduction.

In the following, the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

6 Bibliography

  1. Kutateladse SS (1963) Fundamentals of heat transfer. Edward Arnold, London

    Google Scholar 

  2. Hahne E, Schällig R (1972) Formfaktoren der Wärmeleitung für Anordnungen mit isothermen Rippen. Wärme-und Stoffübertragung 5:39–46

    Article  Google Scholar 

  3. Hahne E, Grigull U (1974) A shape factor scheme for point source configurations. Int J Heat Mass Transf 17:267–273

    Article  Google Scholar 

  4. Hahne E, Grigull U (1975) Formfaktor und Formwiderstand der stationären mehrdimensionalen Wärmeleitung. Int J Heat Mass Transf 18:751–767

    Article  Google Scholar 

  5. Grigull U, Sandner H (1975) Wärmeleitung. Springer-Verlag, Berlin

    MATH  Google Scholar 

  6. Nickolay M, Cramer C, Martin H (2000) Analytical solution for the potential flow through the wall of n-sided hollow cylinders of regular polygonal cross section. Int J Heat Mass Transf 43:139–145

    Article  MATH  Google Scholar 

  7. Cammerer JS (1962) Der Wärme-und Kälteschutz in der Industrie, 4. Auflage, Berlin

    Book  Google Scholar 

  8. Hilpert R (1933) Wärmeabgabe von beheizten Drähten und Rohren im Luftstrom. Forschung Ing Wesen 4:215–224

    Article  Google Scholar 

  9. Elgeti K (1971) Der Wärmeverlust eines in der Wand verlegten Rohres. HLH 22:109–113

    Google Scholar 

  10. Krischer O (1036) Das Temperaturfeld in der Umgebung von Rohrleitungen, die in der Erde verlegt sind. Gesundheitsingenieur 59:537–539

    Google Scholar 

  11. Maly F (1968) Die Wärmeabgabe von Heizungsrohren in Wohnungstrenndecken. Gesundheitsingenieur 89:203–208

    Google Scholar 

  12. Weyh W (1935) Wärmeersparnis durch Flanschisolierung. Arch Wärmewirt 16:151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Hahne, E. (2010). E1 Steady-State Heat Conduction. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_32

Download citation

Publish with us

Policies and ethics