Skip to main content

F3 Heat Transfer by Free Convection: Internal Flows

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 General Relationships

The general formulation of the heat transfer problem for internal flow has been described in Chap. F1 (see in particular Fig. 1b). For a comprehensive explanation of the governing equations, similarity parameters, and empirical correlations the reader is referred to [1]. The present equations are for heat transfer in the absence of radiation.

F3. Fig. 1
figure 1

Average dimensionless heat transfer coefficient Nu as a function of GrPr for heat transfer in horizontal rectilinear enclosures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

6 Bibliography

  1. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley & Sons, New York

    Google Scholar 

  2. Siggia E (1994) High Rayleigh number convection. Annu Rev Fluid Mech 26:137–168

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahlers G, Grossmann S, Lohse D (2009) Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection. Rev Mod Phys 81:503–537

    Google Scholar 

  4. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York

    MATH  Google Scholar 

  5. Busse F (1985) Hydrodynamic instabilities and the transition to turbulence. In: Swinney HL, Gollub JP (eds) Topics in applied physics, vol. 45. Springer-Verlag, Berlin, pp 97–133

    Google Scholar 

  6. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65:851–1112

    Article  Google Scholar 

  7. Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh–Bénard convection. Annu Rev Fluid Mech 32:709–778

    Article  MathSciNet  MATH  Google Scholar 

  8. Funfschilling D, Brown E, Nikolaenko A, Ahlers G (2005) Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J Fluid Mech 536:145–154

    Article  MATH  Google Scholar 

  9. Sun C, Ren LY, Song H, Xia K-Q (2005) Heat transport by turbulent Rayleigh–Bénard convection in 1m diameter cylindrical cells of widely varying aspect ratio. J Fluid Mech 542:165–174

    Article  MATH  Google Scholar 

  10. Nikolaenko A, Brown E, Funfschilling D, Ahlers G (2005) Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less. J Fluid Mech 523:251–260

    Article  MATH  Google Scholar 

  11. Niemela JJ, Sreenivasan KR (2003) Confined turbulent convection. J Fluid Mech 481:355–384

    Article  MATH  Google Scholar 

  12. Chavanne X, Chilla F, Chabaud B, Castaing B, Hebral B (2001) Turbulent Rayleigh–Bénard convection in gaseous and liquid helium. Phys Fluids 13:1300–1320

    Article  MATH  Google Scholar 

  13. Cioni S, Ciliberto S, Sommeria J (1997) Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J Fluid Mech 335:111–140

    Article  MathSciNet  Google Scholar 

  14. Glazier JA, Segawa T, Naert A, Sano M (1999) Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398:307–310

    Article  Google Scholar 

  15. Grossmann S, Lohse D (2000) Turbulent thermal convection: a unifying view. J Fluid Mech 407:27–56

    Article  MathSciNet  MATH  Google Scholar 

  16. Hölling M, Herwig H (2006) Asymptotic analysis of heat transfer in turbulent Rayleigh–Bénard convection. Int J Heat Mass Trans 49:1129–1136

    Article  MATH  Google Scholar 

  17. Probert D, Brooks RG, Dixon M (1970) Chem Process Eng Heat Trans Survey 35–42

    Google Scholar 

  18. Hollands KGT, Raithby GD, Konicek L (1975) Int J Heat Mass Trans 19:879–884

    Article  Google Scholar 

  19. Catton I, Edwards DK (1967) J Heat Trans 89:295–299

    Article  Google Scholar 

  20. Churchill W (1983) Heat exchanger design handbook, Hemisphere, Washington, DC, Chapter 2.5.8

    Google Scholar 

  21. Dropkin D, Somerscales E (1965) Trans ASME 87:77

    Article  Google Scholar 

  22. Hollands KGT, Unny TE, Raithby GD, Konicek L (1976) Trans ASME J Heat Trans 98:189–193

    Article  Google Scholar 

  23. Randall KR, Mitchell JW, El-Wakil MM (1979) Trans ASME J Heat Trans 101:120–125

    Article  Google Scholar 

  24. Hollands KGT, Konicek L (1973) Int J Heat Mass Trans 16:1467–1476

    Article  Google Scholar 

  25. Inaba H (1984) Int J Heat Mass Trans 27:1127–1139

    Article  Google Scholar 

  26. MacGregor RK, Emery AF (1969) Trans ASME, J Heat Trans Ser C 91:391–403

    Article  Google Scholar 

  27. Yin H, Wung TY, Chen K (1978) Int J Heat Mass Trans 21:307–315

    Article  Google Scholar 

  28. Markatos NC, Pericleous KA (1984) Int J Heat Mass Trans 27:755–772

    Article  Google Scholar 

  29. Merker GP, Mey S (1988) Wärme- & Stoffübertragung 22:291–301

    Article  Google Scholar 

  30. Nishimura T, Shiraishi M, Nagasawa F, Kawamura Y (1988) Int J Heat Mass Trans 31:1679–1686

    Article  Google Scholar 

  31. Bajorek M, Lloyd JR (1982) J Heat Trans 104:527–532

    Article  Google Scholar 

  32. Nansteel MW, Greif R (1981) J Heat Trans 103:623–629

    Article  Google Scholar 

  33. Seki N, Fukusako S, Yamaguchi A (1983) J Heat Trans 105:433–439

    Article  Google Scholar 

  34. Smart DR, Hollands KGT, Raithby GD (1980) J Heat Trans 102:75–80

    Article  Google Scholar 

  35. Itoh M, Fujuta T, Nishiwaki N, Firata M (1970) Int J Heat Mass Trans 13:1364S–1368S

    Article  Google Scholar 

  36. Kühn TH, Goldstein RJ (1976) Int J Heat Mass Trans 19:1126–1134

    Google Scholar 

  37. Hessami MA, Polland A, Rowe RD, Ruth DW (1985) J Heat Trans 107:603–610

    Article  Google Scholar 

  38. Projahn U, Beer H (1985) Wärme- & Stoffübertragung 19:248–254

    Article  Google Scholar 

  39. Nagendra HR, Tirunarayanan MA, Ranachandran A (1970) Chem Eng Sci 25:605–610

    Article  Google Scholar 

  40. Keyhani M, Kulacki FA, Christensen RN (1983) J Heat Trans 105:454–459

    Article  Google Scholar 

  41. Prasad V, Kulacki FA (1985) J Heat Trans 107:596–602

    Article  Google Scholar 

  42. Wright JL, Douglas RW (1986) Int J Heat Mass Trans 29:725–739

    Article  Google Scholar 

  43. Himasekhar K, Bau HH (1986) Int. J. Heat Mass Trans 20:702–712

    Google Scholar 

  44. Prasad A, Kulacki FA (1985) J Heat Trans 107:147–154

    Article  Google Scholar 

  45. Beckermann C, Ramadhyami S, Viskanta R J. Heat Trans109:363–370

    Google Scholar 

  46. Inaba H, Sugawara M, Blumenberg J (1988) Int J Heat Mass Trans 31:1365–1374

    Article  Google Scholar 

  47. Jonsson T, Catton I (1987) J Heat Trans 109:371–377

    Article  Google Scholar 

  48. Rao YF, Fukuda K, Hasegawa S (1987) J Heat Trans 109:919–927

    Article  Google Scholar 

  49. Prasad V (1986) Numer Heat Trans 29: 841–853

    Google Scholar 

  50. Krischer O, Kast W (1978) Trocknungstechnik, vol. 1. Springer-VerlagBerlin:

    Book  Google Scholar 

  51. Acharya S, Goldstein RJ (1985) J Heat Trans 107:855–866

    Article  Google Scholar 

  52. Cheung FB (1977) Int J Heat Mass Trans 20:499–506

    Article  Google Scholar 

  53. Kikuchi Y, Kawasaki T, Shioyama T (1982) Int J Heat Mass Trans 25:363–370

    Article  Google Scholar 

  54. Kulacki FA, Goldstein RJ (1972) J Fluid Mech 55:271–287

    Article  Google Scholar 

  55. Lee J-H, Goldstein RJ (1988) J Heat Trans 110:345–349

    Article  Google Scholar 

  56. Yücel A, Acharya S, Williams ML (1989) Numer Heat Trans 15:261–278

    Article  Google Scholar 

  57. Ranganathan P, Viskanta R (1988) Numer Heat Trans 14:35–59

    Google Scholar 

  58. Trevisan OV, Bejan A (1987) Heat Trans 109:104–112

    Article  Google Scholar 

  59. Jany P, Bejan A (1988) Int J Heat Mass Trans 31:1221S–1235S

    Article  Google Scholar 

  60. Lacroix M (1989) Numer Heat Trans 15B:191–210

    Article  Google Scholar 

  61. Betzel T, Beer H (1988) Wärme & Stoffübertragung 22:335–344

    Article  Google Scholar 

  62. Riviere PH, Beer H (1987) Int Comm Heat Mass Trans 14:155–165

    Article  Google Scholar 

  63. Patterson J, Imberger J (1980) J Fluid Mech 100:65–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Thess, A. (2010). F3 Heat Transfer by Free Convection: Internal Flows. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_121

Download citation

Publish with us

Policies and ethics