Skip to main content

D1 Calculation Methods for Thermophysical Properties

  • Reference work entry
  • First Online:

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

For the description of the heat transfer, the knowledge of thermophysical properties is essential. They occur as parameters in particular equations and have usually a significant influence on the results. For example, the thermal conductivity, the dynamic viscosity, the density, and the specific heat capacity are important for the calculation of heat transfer in a single-phase forced convection.

In case of natural convection, the movement of the fluid is caused by temperature differences in the gravitational field. Therefore, the temperature-dependence of the density is important to know. If a phase change happens (condensation or evaporation), the vapor pressure curve is necessary to determine the temperature at the interface between the two phases. The enthalpy of vaporization then determines the heat flux, whereas the surface tension is an important parameter to describe the formation of such an interface, for example, the bubble formation in a vessel containing a...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

12 Bibliography

  1. Span R, Wagner W (2003) Equations of state for technical applications. Int J Thermophys 24(1):1–162

    Article  Google Scholar 

  2. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th ed. McGraw-Hill, New York

    Google Scholar 

  3. Constantinou L, Gani R (1994) New group contribution method for estimating properties of pure compounds. AIChE J 40(10):1697–1710

    Article  Google Scholar 

  4. Nannoolal Y, Rarey J, Ramjugernath D (2007) Estimation of Pure Component Properties, Part 2: Estimation of Critical Property Data by Group Contribution. Fluid Phase Equilibria 252:1–27

    Article  Google Scholar 

  5. Constantinou L, Gani R, O’Connell JP (1995) Estimation of the acentric factor and the liquid molar volume at 298K using a new group contribution method. Fluid Phase Equilibria 103:11–22

    Article  Google Scholar 

  6. Nannoolal Y, Rarey J, Ramjugernath D, Cordes W (2004) Estimation of pure component properties. Part 1: Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 226:45–63

    Article  Google Scholar 

  7. Jakob A (1995) Thermodynamische Grundlagen der Kristallisation und ihre Anwendung in der Modellentwicklung. Dissertation Universität Oldenburg

    Google Scholar 

  8. Gmehling J, Kolbe B (1988) Thermodynamik. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  9. Hankinson RW, Thomson GH (1979) A new correlation for saturated densities of liquids and their mixtures. AIChE J 25:653–663

    Article  Google Scholar 

  10. Peng D-Y, Robinson DB (1976) A new two constant equation of state. Ind Eng Chem Fundam 15(1):59–64

    Article  Google Scholar 

  11. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203

    Article  Google Scholar 

  12. Ahlers J, Gmehling J (2001) Development of a universal group contribution equation of state: 1. Prediction of fluid densities for pure compounds with a volume translated Peng-Robinson equation of state. Fluid Phase Equilibria 191:177–188

    Article  Google Scholar 

  13. Bronstein IN, Semendjajew KA (2000) Taschenbuch der Mathematik. Verlag Harri Deutsch, Leipzig

    MATH  Google Scholar 

  14. Wagner W (1973) New vapour pressure measurements for argon and nitrogen and a new method of establishing rational vapour pressure equations. Cryogenics. August 470–482

    Google Scholar 

  15. McGarry J (1983) Correlation and prediction of vapor pressures of pure liquids over large pressure ranges. Ind Eng Chem Proc Des Dev 22:313–322

    Article  Google Scholar 

  16. Li P, Ma P-S, Yi S-Z, Zhao Z-G, Cong L-Z (1994) A new Corresponding-States Group-Contribution method (CSGC) for estimating vapor pressures of pure compounds. Fluid Phase Equilibria 101:101–119

    Article  Google Scholar 

  17. Riedel L (1957) Die Berechnung unbekannter thermischer Daten mit Hilfe des erweiterten Korrespondenzprinzips. Kältetechnik 9(5):127–134

    Google Scholar 

  18. Vetere A (1991) Predicting the vapor pressures of pure compounds by using the Wagner equation. Fluid Phase Equilibria 62:1–10

    Article  Google Scholar 

  19. Nannoolal Y, Rarey J, Ramjugernath D (2008) Estimation of Pure Component Properties, Part 3: Estimation of the Vapor Pressure of Non-Electrolyte Organic Compounds via Group Contributions and Group Interactions. Fluid Phase Equilibria 269(1–2):117–133

    Article  Google Scholar 

  20. Hoffmann W, Florin F (1943) Zweckmäßige Darstellung von Dampfdruckkurven. Verfahrenstechnik, Z. VDI-Beiheft Nr. 2

    Google Scholar 

  21. Löffler HJ (1969) Thermodynamik. Grundlagen und Anwendung auf reine Stoffe. Springer-Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  22. Moore WJ, Hummel DO (1986) Physikalische Chemie. Verlag Walter de Gruyter, Berlin

    Book  Google Scholar 

  23. Aly FA, Lee LL (1981) Self consistent equations for calculating the ideal gas heat capacity, enthalpy and entropy. Fluid Phase Equilibria 6:169–179

    Article  Google Scholar 

  24. Kleiber M (2003) The trouble with cp liq. Ind. Eng. Chem. Res. 42:2007–2014

    Article  Google Scholar 

  25. Sastri SRS, Rao KK (1992) A new group contribution method for predicting viscosity of organic liquids. Chem Eng J 50:9

    Article  Google Scholar 

  26. Sastri SRS, Rao KK (2000) A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria 175:311–323

    Article  Google Scholar 

  27. van Velzen D, Lopes Cardozo R, Langenkamp H (1972) A Liquid Viscosity – Temperature - Chemical Constitution Relation for Organic Compunds. Ind Eng Chem Fundam 11(1):20–25

    Article  Google Scholar 

  28. Nannoolal Y (2006) Development and Critical Evaluation of Group Contribution Methods for the Estimation of Critical Properties, Liquid Vapor Pressure and Liquid Viscosity of Organic Compounds. Thesis, University of Kwazulu-Natal, December

    Google Scholar 

  29. Lucas K (1981) Die Druckabhängigkeit der Viskosität von Flüssigkeiten - eine einfache Abschätzung. Chem.-Ing.-Tech. 53:959–960

    Article  Google Scholar 

  30. Lucas K, Luckas M (2002) VDI-Wärmeatlas, 9. Auflage Abschnitt D. Springer Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  31. Wagner W (2005) FLUIDCAL. Software Package, Ruhr-Universität Bochum

    Google Scholar 

  32. Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18:517

    Article  Google Scholar 

  33. Jamieson DT (1979) Thermal conductivity of liquids. J. Chem. Eng. Data 24:244

    Article  Google Scholar 

  34. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill,New York

    Google Scholar 

  35. Li CC (1976) Thermal conductivity of liquid mixtures. AIChE J 22:927–930

    Article  Google Scholar 

  36. Chung T-H, Ajlan M, Lee LL, Starling KE (1988) Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties. Ind Eng Chem Res 27:671

    Article  Google Scholar 

  37. Stiel LI, Thodos G (1964) The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions. AIChE J 10:26

    Article  Google Scholar 

  38. Fuller EN, Ensley K, Giddings JC (1969) Diffusion of halogenated hydrocarbons in helium. J Phys Chem 73:3679

    Article  Google Scholar 

  39. Duncan JB, Toor HL (1962) An experimental study of three component gas diffusion. AIChE J 8(1):38–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Kleiber, M., Joh, R. (2010). D1 Calculation Methods for Thermophysical Properties. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_10

Download citation

Publish with us

Policies and ethics