Skip to main content

Boron Stable Isotopes

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Properties

Boron , a group 13 metalloid, has two natural occurring stable isotopes, 11B (11.00930536[45]) and 10B (10.01293695[41]), with relative abundances of 0.199(7) and 0.801(7), respectively, and hence occurs approximately in a 4:1 ratio (source of data: National Institute of Standards and Technology, http://www.nist.gov/pml/data/comp.cfm). Numerous radioisotopes of boron also occur with masses from 7B to 17B, but their half-lives are all <1 s. As with other stable isotopic systems, natural isotope variation is described using delta notation, i.e., the per mil variation from the 11B/10B ratio of the synthetic boric acid international reference material NIST SRM-951 (atom%: 11B = 80.173 ± 0.013; 10B = 19.827 ± 0.013; Catanzaro et al., 1970). This can be described by the following equation:

$$ {\delta}^{11}B=\left(\frac{{}^{11}B/{}^{10}B_{\mathrm{sample}}}{{}^{11}B/{}^{10}B_{\mathrm{reference}}}-1\right)\times {10}^3 $$
(1)

In natural systems, boron is almost exclusively found...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aston, F. W., 1920. The mass-spectra of chemical elements. Philosophical Magazine, 39, 611–625.

    Article  Google Scholar 

  • Barth, S., 1993. Boron isotope variations in nature: a synthesis. Geologische Rundschau, 82, 640–651.

    Article  Google Scholar 

  • Barth, S., 1998. Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Resources, 32, 685–690.

    Google Scholar 

  • Bast, R., Scherer, E. E., Mezger, K., Austheim, H., Ludwig, T., Marschall, H. R., Putnis, A., and Lowen, K., 2014. Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway. Contributions to Mineralogy and Petrology, 168, 1069.

    Article  Google Scholar 

  • Catanzaro, E.J., Champion, C.E., Garner, E.L., Marinenko, G., Sappenfield, K.M., and Shields, W.R., 1970. Boric assay; isotopic, and assay standard reference materials. https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiBn8Wi7OvPAhWhJ8AKHbXzAxsQFggjMAE&url=https%3A%2F%2Fwww.nist.gov%2Fdocument-10540&usg=AFQjCNE_2yV4zQHmpOjae2B7dz2xOVTPEw&sig2=85gz67j2R_NdoNe0gp7Vsg

  • Chaussidon, M., 1995. Isotope geochemistry of boron in mantle rocks, tektites and meteorites. Comptes Rendus de l’Academie des Sciences Paris, 321, 455–472.

    Google Scholar 

  • Chaussidon, M., and Marty, B., 1995. Primitive boron isotope composition of the mantle. Science, 269, 383–386.

    Article  Google Scholar 

  • Chaussidon, M., and Robert, F., 1995. Nucleosynthesis of 11B-rich boron in the presolar cloud recorded in meteoritic chondrules. Nature, 374, 337–339.

    Article  Google Scholar 

  • Fietzke, J., Heinemann, A., Taubner, I., Bohm, F., Erez, J., and Eisenhauer, A., 2010. Boron isotopic ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference materials. Journal of Analytical Atomic Spectrometry, 25, 1953–1957.

    Article  Google Scholar 

  • Foster, G. L., 2008. Seawater pH, pCO2 and [CO3 2-] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 271, 254–266.

    Article  Google Scholar 

  • Foster, G. L., and Rae, J. W. B., 2016. Reconstructing ocean pH with boron isotopes in foraminifera. Annual Review of Earth and Planetary Science, 44, 207–237.

    Article  Google Scholar 

  • Foster, G.L., Pogge von Strandmann, P. A. E., and Rae, J. W. B., 2010. Boron and magnesium isotopic composition of seawater. Geochemistry Geophysics Geosystems, 11, Q08015, doi:10.1029/2010GC003201.

    Google Scholar 

  • Hemming, N. G., and Hanson, G. N., 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56, 537–543.

    Article  Google Scholar 

  • Henehan, M. J., Rae, J. W. B., Foster, G. L., Erez, J., Prentice, K. C., Kurcera, M., Bostock, H. C., Martinez-Boti, M. A., Milton, J. A., Wilson, P. A., Marshall, B., and Elliott, T., 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters, 364, 111–122.

    Article  Google Scholar 

  • Ishikawa, T., and Nakamura, E., 1993. Boron isotope systematics of marine sediments. Earth and Planetary Science Letters, 117, 567–580.

    Article  Google Scholar 

  • Klochko, K., Kaufman, A. J., Yoa, W., Byrne, R. H., and Tossell, J. A., 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248, 261–270.

    Article  Google Scholar 

  • Lécuyer, C., Grandjean, P., Reynard, B., Albarede, F., and Telouk, P., 2002. 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chemical Geology, 186, 45–55.

    Article  Google Scholar 

  • Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M., 2010. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta, 74, 1801–1811.

    Article  Google Scholar 

  • Leeman, W. P., Tonarini, S., Chan, L. H., and Borg, L. E., 2004. Boron and lithium isotopic variations in a hot subduction zone – the southern Washington Cascades. Chemical Geology, 212, 101–124.

    Article  Google Scholar 

  • Lemarchand, D., Gaillardet, J., Lewin, E., and Allegre, C. J., 2002. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chemical Geology, 190, 123–140.

    Article  Google Scholar 

  • Lodders, K., 2010. Solar system abundances of the elements. In: Goswami, A., and Reddy, B.E., (eds.), Principles and Perspectives in Cosmochemistry. Astrophysics and Space Science Proceedings. Berlin/Heidelberg: Springer, pp. 379–417.

    Google Scholar 

  • Marschall, H. R., and Jiang, S. Y., 2011. Tourmaline isotopes: no element left behind. Elements, 7, 313–319.

    Article  Google Scholar 

  • Martinez-Boti, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D., 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 518, 49–54.

    Article  Google Scholar 

  • McCulloch, M. T., Falter, J., Trotter, J., and Montagna, P., 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change, 2, 623–627.

    Article  Google Scholar 

  • McMullen, C. C., Gragg, C. B., and Thode, H. G., 1961. Absolute ratio B11/B10 in Searles Lake borax. Geochimica et Cosmochimica Acta, 23, 147–149.

    Google Scholar 

  • Menard, G., Vlastélic, I., Ionov, D. A., Rose-Koga, E. F., Piro, J.-L., and Pin, C., 2013. Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS: insights into the B budget of the mantle and B behavior in magmatic systems. Chemical Geology, 354, 139–149.

    Article  Google Scholar 

  • Meyer, C., Wunder, B., Meixner, A., Romer, R. L., and Heinrich, W., 2008. Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contributions to Mineralogy and Petrology, 156, 259–267.

    Article  Google Scholar 

  • Nir, O., Vengosh, A., Harkness, J. S., Dwyer, G. S., and Lahav, O., 2015. Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth and Planetary Science Letters, 414, 1–5.

    Article  Google Scholar 

  • Palmer, M. R., Spivack, A. J., and Edmond, J. M., 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochimica et Cosmochimica Acta, 51, 2319–2323.

    Article  Google Scholar 

  • Palmer, M. R., London, D., Morgan, G. B., and Babb, H. A., 1992. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapour: a temperature and pressure dependent isotopic system. Chemical Geology, 101, 123–129.

    Google Scholar 

  • Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T., 2011. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth and Planetary Science Letters, 302, 403–413.

    Article  Google Scholar 

  • Rosner, M., Erzinger, J., Franz, G., and Trumbull, R.B., 2003. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochemistry Geophysics Geosystems, 4(8). Doi: 10.1029/2002GC000438.

    Google Scholar 

  • Sanyal, A., Nugent, M., Reeder, R. J., and Bijma, J., 2000. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochimica et Cosmochimica Acta, 64, 1551–1555.

    Google Scholar 

  • Schmitt, A.-D., Vigier, N., Lemarchand, D., Millot, R., Stille, P., and Chabaux, F., 2012. Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. Comptes Rendus Geoscience, 344, 704–722.

    Article  Google Scholar 

  • Simon, L., Lécuyer, C., Maréchal, C., and Coltice, N., 2006. Modelling the geochemical cycle of boron: implications for the long-term δ11B evolution of seawater and oceanic crust. Chemical Geology, 225, 61–76.

    Article  Google Scholar 

  • Smith, H. J., Spivack, A. J., Staudigel, H., and Hart, S. R., 1995. The boron isotopic composition of altered oceanic crust. Chemical Geology, 126, 119–135.

    Article  Google Scholar 

  • Spivack, A. J., and Edmond, J. M., 1987. Boron isotope exchange between seawater and the oceanic-crust. Geochimica et Cosmochimica Acta, 51, 1033–1043.

    Article  Google Scholar 

  • Vengosh, A., Chivas, A. R., McCulloch, M. T., Starinsky, A., and Kolodny, Y., 1991. Boron isotope geochemistry of Australian salt lakes. Geochemica et Cosmochimica Acta, 55, 2591–2606.

    Article  Google Scholar 

  • Warner, N. R., Darrah, T. H., Jackson, R. B., Millot, R., Kloppmann, W., and Vengosh, A., 2014. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environmental Science and Technology, 48(21), 12552–12560.

    Article  Google Scholar 

  • Xiao, J., Xiao, Y.-K., Jin, Z.-D., He, M.-Y., and Liu, C.-Q., 2013. Boron isotope variations and its geochemical application in nature. Australian Journal of Earth Sciences, 60, 431–447.

    Article  Google Scholar 

  • Xu, Q., Dong, Y., Zhu, H., and Sun, A., 2015. Separation and analysis of boron isotope in high plant by thermal ionisation mass spectrometry. International Journal of Analytical Chemistry, 2015, 6. Article ID 364242. http://dx.doi.org/10.1155/2015/364242.

  • Zeebe, R., and Wolf-Gladow, D. A., 2001. CO 2 in seawater: Equilibrium, Kinetics, Isotopes. Amesterdam: Elsevier.

    Google Scholar 

  • Zeininger, H., and Heumann, K. G., 1983. Boron isotopic ratio measurement by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 48, 377–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gavin L. Foster , Christophe Lécuyer or Horst R. Marschall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Foster, G.L., Lécuyer, C., Marschall, H.R. (2016). Boron Stable Isotopes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_238-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_238-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics