Skip to main content

Kinetoplastea

  • Living reference work entry
  • First Online:

Abstract

The class Kinetoplastea Cavalier-Smith 1981 (previously known as the order Kinetoplastida Honigberg 1963) constitutes an important group of free-living and parasitic flagellates. The group is named after the kinetoplast, a unique cell organelle consisting of the tightly packaged mitochondrial DNA, which forms a stainable structure within the single mitochondrion. The Kinetoplastea includes several important human pathogens that are carried by bloodsucking insect vectors, e.g., Trypanosoma brucei, T. cruzi, Leishmania donovani, L. major, and L. tropica, as well as vector-borne animal pathogens such as the African tsetse-transmitted trypanosomes that cause nagana. Some kinetoplastids are plant parasites, e.g., Phytomonas, transmitted by phytophagous bugs. While these pathogenic kinetoplastids are of major medical, veterinary, and economic importance, many other kinetoplastid species also have a parasitic lifestyle, either in a single host species or alternating between two different hosts. The ubiquitous free-living kinetoplastids such as Bodo are of major ecological importance as heterotrophs in marine and freshwater environments. Some kinetoplastid species are popular and significant laboratory model species for biochemical and molecular biology investigations. In particular, Trypanosoma brucei is notorious for its ability to undergo antigenic variation, and Leishmania infection is a paradigm for T-helper cell type I and type II immune responses.

Revised from the original chapter of Keith Vickerman

This is a preview of subscription content, log in via an institution.

References

  • Adje, C. A., Opperdoes, F. R., & Michels, P. A. M. (1998). Molecular analysis of phosphoglycerate kinase in Trypanoplasma borreli and the evolution of this enzyme in Kinetoplastida. Gene, 217, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Akopyants, N. S., Kimblin, N., Secundino, N., Patrick, R., Peters, N., Lawyer, P., Dobson, D. E., Beverley, S. M., & Sacks, D. L. (2009). Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science, 324, 265–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, L. O., & Andrews, N. W. (2005). The Trypanosoma cruzi-host-cell interplay: Location, invasion, retention. Nature Reviews Microbiology, 3, 819–823.

    Article  CAS  PubMed  Google Scholar 

  • Anez, N. (1982). Studies on Trypanosoma rangeli Tejera, 1920. IV. A reconsideration of its systematic position. Memórias do Instituto Oswaldo Cruz, 77, 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Annoura, T., Nara, T., Makiuchi, T., Hashimoto, T., & Aoki, T. (2005). The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions. Journal of Molecular Evolution, 60, 113–127.

    Article  CAS  PubMed  Google Scholar 

  • Ashford, R. W., & Crewe, W. (2003). The parasites of Homo sapiens. An annotated checklist of the Protozoa, Helminths and Arthropods for which we are home. London: Taylor and Francis.

    Book  Google Scholar 

  • Atkins, M. S., Teske, A. P., & Anderson, O. R. (2000). A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. Journal of Eukaryotic Microbiology, 47, 400–411.

    Article  CAS  PubMed  Google Scholar 

  • Balmer, O., Beadell, J. S., Gibson, W., & Caccone, A. (2011). Phylogeography and taxonomy of Trypanosoma brucei. PLoS Neglected Tropical Diseases, 5, e961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barry, J. D., Graham, S. V., Fotheringham, M., Graham, V. S., Kobryn, K., & Wymer, B. (1998). VSG gene control and infectivity strategy of metacyclic stage Trypanosoma brucei. Molecular and Biochemical Parasitology, 91, 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Bastin, P., Sherwin, T., & Gull, K. (1998). Paraflagellar rod is vital for trypanosome motility. Nature, 391, 548.

    Article  CAS  PubMed  Google Scholar 

  • Bates, P. A. (2007). Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. International Journal for Parasitology, 37, 1097–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker, C. D. (1977). Flagellate parasites of fish. In J. P. Kreier (Ed.), Parasitic protozoa (Vol. 1, pp. 358–416). New York: Academic.

    Google Scholar 

  • Benne, R., Vandenburg, J., Brakenhoff, J. P. J., Sloof, P., Vanboom, J. H., & Tromp, M. C. (1986). Major transcript of the frameshifted Coxll gene from trypanosome mitochondria contains 4 nucleotides that are not encoded in the DNA. Cell, 46, 819–826.

    Article  CAS  PubMed  Google Scholar 

  • Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, W., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L. H., Wickstead, B., Alsmark, U. C. M., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetter, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., MacLeod, A., Mooney, P. J., Moule, S., Martin, D. M. A., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quail, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Talton, L., Turner, C. M. R., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S. L., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barret, B. G., Donelson, J. E., Hall, N., Fraser, C. M., et al. (2005). The genome of the African trypanosome Trypanosoma brucei. Science, 309, 416–422.

    Article  CAS  PubMed  Google Scholar 

  • Beverley, S. M., & Clayton, C. E. (1993). Transfection of Leishmania and Trypanosoma brucei by electroporation. In J. E. Hyde (Ed.), Protocols in molecular parasitology (pp. 333–348). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Blom, D., de Haan, A., van den Berg, M., Sloof, P., Jirku, M., Lukes, J., & Benne, R. (1998). RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Research, 26, 1205–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum, M. L., Down, J. A., Gurnett, A. M., Carrington, M., Turner, M. J., & Wiley, D. C. (1993). A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature, 362, 603–609.

    Article  CAS  PubMed  Google Scholar 

  • Borst, P. (1986). Discontinuous transcription and antigenic variation in trypanosomes. Annual Review of Biochemistry, 55, 701–732.

    Article  CAS  PubMed  Google Scholar 

  • Borst, P., & Cross, G. A. M. (1982). Molecular basis for trypanosome antigenic variation. Cell, 29, 291–303.

    Article  CAS  PubMed  Google Scholar 

  • Bovee, E. C., & Telford, S. R. (1962). Protozoan inquilines from Florida reptiles. Quarterly Journal of the Florida Academy of Science, 25, 180–191.

    Google Scholar 

  • Branche, C., Kohl, L., Toutirais, G., Buisson, J., Cosson, J., & Bastin, P. (2006). Conserved and specific functions of axoneme components in trypanosome motility. Journal of Cell Science, 119, 3443–3455.

    Article  CAS  PubMed  Google Scholar 

  • Bringaud, F., Riviere, L., & Coustou, V. (2006). Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Molecular and Biochemical Parasitology, 149, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Broadhead, R., Dawe, H. R., Farr, H., Griffiths, S., Hart, S. R., Portman, N., Shaw, M. K., Ginger, M. L., Gaskell, S. J., McKean, P. G., & Gull, K. (2006). Flagellar motility is required for the viability of the bloodstream trypanosome. Nature, 440, 224–227.

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle, G., Lom, J., Nohỳnkovà, E., & Joyon, L. (1979). Comparison et evolution des structures cellulaires chez plusiers éspeces de Bodonides et Cryptobiides appartenant genres Bodo, Cryptobia et Trypanoplasma (Kinetoplastida, Mastigophora). Protistologica, 15, 197–221.

    Google Scholar 

  • Brun, R., & Schonenberger, M. (1979). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Tropica, 36, 289–292.

    CAS  PubMed  Google Scholar 

  • Buscaglia, C. A., Campo, V. A., Frasch, A. C. C., & Di Noia, J. M. (2006). Trypanosoma cruzi surface mucins: Host-dependent coat diversity. Nature Reviews Microbiology, 4, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Callahan, H. A., Litaker, R. W., & Noga, E. J. (2002). Molecular taxonomy of the suborder Bodonina (order Kinetoplastida), including the important fish parasite, Ichthyobodo necator. Journal of Eukaryotic Microbiology, 49, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Camargo, E. P. (1964). Growth and differentiation of Trypanosoma cruzi 1. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medecina Tropicale de Säo Paulo, 6, 93–100.

    CAS  Google Scholar 

  • Caraguel, C. G. B., O’Kelly, C. J., Legendre, P., Frasca, S., Gast, R. J., Despres, B. M., Cawthorn, R. J., & Greenwood, S. J. (2007). Microheterogeneity and coevolution: An examination of rDNA sequence characteristics in Neoparamoeba pemaquidensis and its prokinetoplastid endosymbiont. Journal of Eukaryotic Microbiology, 54, 418–426.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, L. R., & Englund, P. T. (1995). Kinetoplast maxicircle DNA replication in Crithidia fasciculata and Trypanosoma brucei. Molecular and Cellular Biology, 15, 6794–6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, M., Ott, R. D., & Hill, G. C. (2006). Trypanosome alternative oxidase: From molecule to function. Trends in Parasitology, 22, 484–491.

    Article  CAS  PubMed  Google Scholar 

  • Chaumont, F., Schanck, A. N., Blum, J. J., & Opperdoes, F. R. (1994). Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Molecular and Biochemical Parasitology, 67, 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, R., Dejesus, A. R., & Cross, G. A. M. (1993). Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum cell adhesion. Journal of Cell Biology, 122, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Coppens, I., & Courtoy, P. J. (2000). The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annual Review of Microbiology, 54, 129–156.

    Article  CAS  PubMed  Google Scholar 

  • Creek, D. J., Chokkathukalam, A., Jankevics, A., Burgess, K. E. V., Breitling, R., & Barrett, M. P. (2012). Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Analytical Chemistry, 84, 8442–8447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creek, D. J., Nijagal, B., Kim, D. H., Rojas, F., Matthews, K. R., & Barrett, M. P. (2013). Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 57, 2768–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham, I. (1977). New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. Journal of Protozoology, 24, 325–329.

    Article  CAS  PubMed  Google Scholar 

  • Current, W. L. (1980). Cryptobia sp. in the snail Triadopsis multilineata (Say): Fine structure of attached flagellates and their mode of attachment to the spermatheca. Journal of Protozoology, 27, 278–287.

    Article  Google Scholar 

  • Cuthbertson, R. S. (1981). Kinetoplast DNA in Trypanosoma equinum. Journal of Protozoology, 28, 182–188.

    Article  CAS  PubMed  Google Scholar 

  • de Souza, W., & Motta, M. C. M. (1999). Endosymbiosis in protozoa of the Trypanosomatidae family. Fems Microbiology Letters, 173, 1–8.

    Article  PubMed  Google Scholar 

  • Deschamps, P., Lara, E., Marande, W., Lopez-Garcia, P., Ekelund, F., & Moreira, D. (2011). Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Molecular Biology and Evolution, 28, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Dolezel, D., Jirku, M., Maslov, D. A., & Lukes, J. (2000). Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 50, 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  • Dollet, M. (1984). Plant diseases caused by flagellate protozoa (Phytomonas). Annual Review of Phytopathology, 22, 115–132.

    Article  Google Scholar 

  • Dooijes, D., Chaves, I., Kieft, R., Dirks-Mulder, A., Martin, W., & Borst, P. (2000). Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Research, 28, 3017–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak, J. A., Hall, T. E., Crane, M. S. J., Engel, J. C., McDaniel, J. P., & Uriegas, R. (1982). Trypanosoma cruzi: Flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. Journal of Protozoology, 29, 430–437.

    Article  CAS  PubMed  Google Scholar 

  • Elbrachter, M., Schnepf, E., & Balzer, I. (1996). Hemistasia phaeocysticola (SCHERFFEL) comb nov, redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Archiv Fur Protistenkunde, 147, 125–136.

    Article  Google Scholar 

  • El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Aslund, L., Attipoe, P., Bontempi, E., Bringaud, F., Burton, P., Cadag, E., Campbell, D. A., Carrington, M., Crabtree, J., Darban, H., da Silveira, J. F., de Jong, P., Edwards, K., Englund, P. T., Fazelina, G., Feldblyum, T., Ferella, M., Frasch, A. C., Gull, K., Horn, D., Hou, L. H., Huang, Y. T., Kindlund, E., Ktingbeil, M., Kluge, S., Koo, H., Lacerda, D., Levin, M. J., Lorenzi, H., Louie, T., Machado, C. R., McCulloch, R., McKenna, A., Mizuno, Y., Mottram, J. C., Nelson, S., Ochaya, S., Osoegawa, K., Pai, G., Parsons, M., Pentony, M., Pettersson, U., Pop, M., Ramirez, J. L., Rinta, J., Robertson, L., Salzberg, S. L., Sanchez, D. O., Seyler, A., Sharma, R., Shetty, J., Simpson, A. J., Sisk, E., Tammi, M. T., Tarteton, R., Teixeira, S., Van Aken, S., Vogt, C., Ward, P. N., Wickstead, B., Wortman, J., White, O., Fraser, C. M., Stuart, K. D., & Andersson, B. (2005a). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 309, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed, N. M., Myler, P. J., Blandin, G., Berriman, M., Crabtree, J., Aggarwal, G., Caler, E., Renauld, H., Worthey, E. A., Hertz-Fowler, C., Ghedin, E., Peacock, C., Bartholomeu, D. C., Haas, B. J., Tran, A. N., Wortman, J. R., Alsmark, U. C. M., Angiuoli, S., Anupama, A., Badger, J., Bringaud, F., Cadag, E., Carlton, J. M., Cerqueira, G. C., Creasy, T., Delcher, A. L., Djikeng, A., Embley, T. M., Hauser, C., Ivens, A. C., Kummerfeld, S. K., Pereira-Leal, J. B., Nilsson, D., Peterson, J., Salzberg, S. L., Shallom, J., Silva, J. C., Sundaram, J., Westenberger, S., White, O., Metville, S. E., Donelson, J. E., Andersson, B., Stuart, K. D., & Hall, N. (2005b). Comparative genomics of trypanosomatid parasitic protozoa. Science, 309, 404–409.

    Article  CAS  PubMed  Google Scholar 

  • Engstler, M., Thilo, L., Weise, F., Grunfelder, C. G., Schwarz, H., Boshart, M., & Overath, P. (2004). Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. Journal of Cell Science, 117, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Evering, T., & Weiss, L. M. (2006). The immunology of parasite infections in immunocompromised hosts. Parasite Immunology, 28, 549–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eyden, B. P. (1977). Morphology and ultrastructure of Bodo designis Skuja 1948. Protistologica, 13, 169–179.

    Google Scholar 

  • Fairlamb, A. H., & Cerami, A. (1992). Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology, 46, 695–729.

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb, A. H., Blackburn, P., Ulrich, P., Chait, B. T., & Cerami, A. (1985). Trypanothione – A novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science, 227, 1485–1487.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, M. A. J. (1994). What can GPI do for you? Parasitology Today, 10, 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Becerra, C., Sanchez Moreno, M., Osuna, A., & Opperdoes, F. R. (1997). Comparative aspects of energy metabolism in plant trypanosomatids. Journal of Eukaryotic Microbiology, 44, 523–529.

    Article  CAS  Google Scholar 

  • Field, M. C., & Carrington, M. (2009). The trypanosome flagellar pocket. Nature Reviews Microbiology, 7, 775–786.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo, R., Rosa, D. S., Gomes, Y. M., Nakasawa, M., & Soares, M. J. (2004). Reservosome: An endocytic compartment in epimastigote forms of the protozoan Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). Correlation between endocytosis of nutrients and cell differentiation. Parasitology, 129, 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Flegentov, P., Votýpka, J., Skalický, T., Logacheva, M. D., Penin, A. A., Tanifuji, G., Onodera, N. T., Kondrashov, A. S., Volf, P., Archibald, J. M. & Lukeš, J. (2013). Paratrypanosoma is a novel early-branching trypanosomatid. Current Biology, 23, 1787–1793.

    Article  CAS  Google Scholar 

  • Gaunt, M. W., Yeo, M., Frame, I. A., Stothard, J. R., Carrasco, H. J., Taylor, M. C., Mena, S. S., Veazey, P., Miles, G. A. J., Acosta, N., de Arias, A. R., & Miles, M. A. (2003). Mechanism of genetic exchange in American trypanosomes. Nature, 421, 936–939.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, W., Peacock, L., Ferris, V., Williams, K., & Bailey, M. (2008). The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasites and Vectors, 1, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillies, C., & Hanson, E. D. (1963). A new species of Leptomonas parasitizing the macronucleus of Paramecium trichium. Journal of Protozoology, 10, 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Gortz, H. D., & Dieckmann, J. (1987). Leptomonas ciliatorum N-Sp (Kinetoplastida, Trypanosomatidae) in the macronucleus of a hypotrichous ciliate. Journal of Protozoology, 34, 259–263.

    Article  Google Scholar 

  • Gualdron-Lopez, M., Brennand, A., Hannaert, V., Quinones, W., Caceres, A. J., Bringaud, F., Concepcion, J. L., & Michels, P. A. M. (2012). When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. International Journal for Parasitology, 42, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Guha-Niyogi, A., Sullivan, D. R., & Turco, S. J. (2001). Glycoconjugate structures of parasitic protozoa. Glycobiology, 11, 45R–59R.

    Article  CAS  PubMed  Google Scholar 

  • Gull, K. (1999). The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology, 53, 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Hajduk, S. L., Siqueira, A. M., & Vickerman, K. (1986). Kinetoplast DNA of Bodo caudatus – A non-catenated structure. Molecular and Cellular Biology, 6, 4372–4378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J., & Gibson, W. C. (2004). Trypanosomes are monophyletic: Evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology, 34, 1393–1404.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, P. B., Teixeira, M. M. G., & Stevens, J. R. (2012). The evolution of Trypanosoma cruzi: The ‘bat seeding’ hypothesis. Trends in Parasitology, 28, 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Hannaert, V., Bringaud, F., Opperdoes, F. R., & Michels, P. A. M. (2003). Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplast Biology and Disease, 2, 11.

    Article  Google Scholar 

  • Hirumi, H., Martin, S., Hirumi, K., Inoue, N., Kanbara, H., Saito, A., & Suzuki, N. (1997). Cultivation of bloodstream forms of Trypanosoma brucei and T. evansi in a serum-free medium. Tropical Medicine and International Health, 2, 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Hoare, C. A. (1972). The trypanosomes of mammals. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Hollar, L., Lukes, J., & Maslov, D. A. (1998). Monophyly of endosymbiont containing trypanosomatids: Phylogeny versus taxonomy. Journal of Eukaryotic Microbiology, 45, 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Holwill, M. E. J. (1980). The movement of cilia. In G. W. Gooday, D. Lloyd, & A. P. J. Trinci (Eds.), The eukaryotic microbial cell society for general microbiology symposium 30 (pp. 273–300). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M. R., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y. T., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Muller-Auer, S., Munden, H., Norbertczak, H., Oliver, K., O’Neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schafer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S. G., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B., & Myler, P. J. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, A. P., Quail, M. A., & Berriman, M. (2008). Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics, 9, 594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, A. P., Sanders, M., Berry, A., McQuillan, J., Aslett, M. A., Quail, M. A., Chukualim, B., Capewell, P., MacLeod, A., Melville, S. E., Gibson, W., Barry, J. D., Berriman, M., & Hertz-Fowler, C. (2010). The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 4, e658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, A. P., Berry, A., Aslett, M., Allison, H. C., Burton, P., Vavrova-Anderson, J., Brown, R., Browne, H., Corton, N., Hauser, H., Gamble, J., Gilderthorp, R., Marcello, L., McQuillan, J., Otto, T. D., Quail, M. A., Sanders, M. J., van Tonder, A., Ginger, M. L., Field, M. C., Barry, J. D., Hertz-Fowler, C., & Berriman, M. (2012). Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proceedings of the National Academy of Sciences of the United States of America, 109, 3416–3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenni, L., Marti, S., Schweizer, J., Betschart, B., Lepage, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E., & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, 322, 173–175.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. E., & Englund, P. T. (2012). Network news: The replication of kinetoplast DNA. Annual Review of Microbiology, 66, 473–491.

    Article  CAS  PubMed  Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kedzierski, L., Zhu, Y., & Handman, E. (2006). Leishmania vaccines: Progress and problems. Parasitology, 133, S87–S112.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J., & Gray, M. W. (2005). The tree of eukaryotes. Trends in Ecology and Evolution, 20, 670–676.

    Article  PubMed  Google Scholar 

  • Kelly, J. M., Law, J. M., Chapman, C. J., Van Eyes, G. J. J. M., & Evans, D. A. (1991). Evidence of genetic recombination in Leishmania. Molecular and Biochemical Parasitology, 46, 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Koch, T. A., & Ekelund, F. (2005). Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist, 156, 97–112.

    Article  CAS  PubMed  Google Scholar 

  • Kolev, N. G., Ramey-Butler, K., Cross, G. A. M., Ullu, E., & Tschudi, C. (2012). Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science, 338, 1352–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaCount, D. J., Barrett, B., & Donelson, J. E. (2002). Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. Journal of Biological Chemistry, 277, 17580–17588.

    Article  CAS  PubMed  Google Scholar 

  • Lai, D. H., Hashimi, H., Lun, Z. R., Ayala, F. J., & Lukes, J. (2008). Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings of the National Academy of Sciences of the United States of America, 105, 1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambson, B., Smyth, A., & Barker, D. C. (2000). Leishmania donovani: Development and characterisation of a kinetoplast DNA probe and its use in the detection of parasites. Experimental Parasitology, 94, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. A., & Langridge, W. P. (1947). Developmental forms of Trypanosoma brucei in the “saliva” of Glossina pallidipes and G. austeni. Annals of Tropical Medicine and Parasitology, 41, 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. N., & Englund, P. T. (2007). The rotational dynamics of kinetoplast DNA replication. Molecular Microbiology, 64, 676–690.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. Y., Liu, Y. N., Motyka, S. A., Agbo, E. E. C., & Englund, P. T. (2005). Fellowship of the rings: The replication of kinetoplast DNA. Trends in Parasitology, 21, 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Lom, J. (1979). Biology of the trypanosomes and trypanoplasms of fish. In W. H. R. Lumsden & D. A. Evans (Eds.), Biology of the kinetoplastida (Vol. 2, pp. 269–337). London: Academic.

    Google Scholar 

  • Losos, G. J., & Ikede, B. O. (1972). Review of the pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Veterinary Pathology, 9, 1–71.

    Article  Google Scholar 

  • Lukes, J., Jirku, M., Avliyakulov, N., & Benada, O. (1998). Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO Journal, 17, 838–846.

    Article  CAS  Google Scholar 

  • Lukes, J., Guilbride, D. L., Votypka, J., Zikova, A., Benne, R., & Englund, P. T. (2002). Kinetoplast DNA network: Evolution of an improbable structure. Eukaryotic Cell, 1, 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod, A., Tweedie, A., McLellan, S., Taylor, S., Cooper, A., Sweeney, L., Turner, C. M. R., & Tait, A. (2005). Allelic segregation and independent assortment in Trypanosoma brucei crosses: Proof that the genetic system is Mendelian and involves meiosis. Molecular and Biochemical Parasitology, 143, 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Makiuchi, T., Annoura, T., Hashimoto, M., Hashimoto, T., Aoki, T., & Nara, T. (2011). Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid Euglenozoan. Protist, 162, 482–489.

    Article  CAS  PubMed  Google Scholar 

  • Maser, P., Grether-Buhler, Y., Kaminsky, R., & Brun, R. (2002). An anti-contamination cocktail for the in vitro isolation and cultivation of parasitic protozoa. Parasitology Research, 88, 172–174.

    Article  PubMed  Google Scholar 

  • Masiga, D. K., & Gibson, W. C. (1990). Specific probes for Trypanosoma (Trypanozoon) evansi based on kinetoplast DNA mini-circles. Molecular and Biochemical Parasitology, 40, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Maslov, D. A., & Simpson, L. (1994). RNA editing and mitochondrial gene organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Molecular and Cellular Biology, 14, 8174–8182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslov, D. A., Avila, H. A., Lake, J. A., & Simpson, L. (1994). Evolution of RNA editing in kinetoplastid protozoa. Nature, 368, 345–348.

    Article  CAS  PubMed  Google Scholar 

  • Maslov, D. A., Lukes, J., Jirku, M., & Simpson, L. (1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology, 75, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Maslov, D. A., Xu, X., Westenberger, S., Yurchenko, V. A., Lukes, J., Sturm, N. R., & Campbell, D. A. (2007). Discovery and “bar-coding” of new species of the trypanosomatidae by the analysis of spliced leader RNA gene sequences in environmental samples. Journal of Eukaryotic Microbiology, 54, 48S.

    Article  CAS  Google Scholar 

  • Maslov, D. A., Votypka, J., Yurchenko, V., & Lukes, J. (2013). Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends in Parasitology, 29, 43–52.

    Article  PubMed  Google Scholar 

  • Matthews, K. R., & Gull, K. (1994). Cycles within cycles – The interplay between differentiation and cell division in Trypanosoma brucei. Parasitology Today, 10, 473–476.

    Article  CAS  PubMed  Google Scholar 

  • McGhee, R. B., & Cosgrove, W. B. (1980). Biology and physiology of the lower Trypanosomatidae. Microbiological Reviews, 44, 140–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKean, P. G., Baines, A., Vaughan, S., & Gull, K. (2003). Gamma-Tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Current Biology, 13, 598–602.

    Article  CAS  PubMed  Google Scholar 

  • McNamara, J. J., Mohammed, G., & Gibson, W. C. (1994). Trypanosoma (Nannomonas) godfreyi sp. nov. from tsetse-flies in the Gambia: Biological and biochemical characterization. Parasitology, 109, 497–509.

    Article  PubMed  Google Scholar 

  • Melville, S. E., Leech, V., Gerrard, C. S., Tait, A., & Blackwell, J. M. (1998). The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Molecular and Biochemical Parasitology, 94, 155–173.

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak, E., Yurchenko, V., Kolesnikov, A. A., Alexandrov, K., Podlipaev, S. A., & Maslov, D. A. (2001). Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: Polyphyly of Leptomonas and Blastocrithidia. Journal of Eukaryotic Microbiology, 48, 161–169.

    Article  CAS  PubMed  Google Scholar 

  • Michels, P. A., & Hannaert, V. (1994). The evolution of kinetoplastid glycosomes. Journal of Bioenergetics and Biomembranes, 26, 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Miles, M. A., Llewellyn, M. S., Lewis, M. D., Yeo, M., Baleela, R., Fitzpatrick, S., Gaunt, M. W., & Mauricio, I. L. (2009). The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: Looking back and to the future. Parasitology, 136, 1509–1528.

    Article  CAS  PubMed  Google Scholar 

  • Moloo, S. K., Losos, G. J., & Kutuza, S. B. (1973). Transmission of Trypanosoma brucei to cats and dogs by feeding on infected goats. Transactions of the Royal Society of Tropical Medicine and Hygiene, 67, 287.

    CAS  PubMed  Google Scholar 

  • Molyneux, D. H. (1983). Host parasite relationship of Trypanosomatidae in vectors. In K. F. Harris (Ed.), Current topics in vector research (Vol. 1, pp. 117–147). New York: Praeger.

    Google Scholar 

  • Moreira, D., López-García, P., & Vickerman, K. (2004). An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: Proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology, 54, 1861–1875.

    Article  CAS  PubMed  Google Scholar 

  • Moreira-Leite, F. F., Sherwin, T., Kohl, L., & Gull, K. (2001). A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science, 294, 610–612.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, G. W., Hall, B. S., Denny, P. W., Carrington, M., & Field, M. C. (2002a). The kinetoplastida endocytic apparatus. Part I: A dynamic system for nutrition and evasion of host defences. Trends in Parasitology, 18, 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, G. W., Hall, B. S., Denny, P. W., Field, M. C., & Carrington, M. (2002b). The endocytic apparatus of the kinetoplastida. Part II: Machinery and components of the system. Trends in Parasitology, 18, 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Naderer, T., & McConville, M. J. (2008). The Leishmania-macrophage interaction: A metabolic perspective. Cellular Microbiology, 10, 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, M., & Gull, K. (2001). A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature, 414, 759–763.

    Article  CAS  PubMed  Google Scholar 

  • Nerad, T. A. (1991). Catalogue of protists. Rockville: American Type Culture Collection.

    Google Scholar 

  • Ngo, H., Tschudi, C., Gull, K., & Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America, 95, 14687–14692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohỳnkovà, E. (1984). A new pathogenic Cryptobia from fresh water fishes: A light and electron microscopic study. Protistologica, 20, 181–195.

    Google Scholar 

  • Olivier, M., Gregory, D. J., & Forget, G. (2005). Subversion mechanisms by which Leishmania parasites can escape the host immune response: A signaling point of view. Clinical Microbiology Reviews, 18, 293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperdoes, F. R. (1985). Biochemical peculiarities of trypanosomes, African and South American. British Medical Bulletin, 41, 130–136.

    CAS  PubMed  Google Scholar 

  • Opperdoes, F. R., Nohỳnkovà, E., Van Schaftingen, E., Lambeir, A.-M., Veenhuis, M., & Van Roy, J. (1988). Demonstration of glycosomes (microbodies) in the bodonid flagellate Trypanoplasma borreli (Protozoa, Kinetoplastida). Molecular and Biochemical Parasitology, 30, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Overath, P., Haag, J., Lischke, A., & O’Huigin, C. (2001). The surface structure of trypanosomes in relation to their molecular phylogeny. International Journal for Parasitology, 31, 468–471.

    Article  CAS  PubMed  Google Scholar 

  • Pays, E., Vanhamme, L., & Perez-Morga, D. (2004). Antigenic variation in Trypanosoma brucei: Facts, challenges and mysteries. Current Opinion in Microbiology, 7, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M.-A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L., Faulconbridge, A., Jeffares, D., Depledge, D. P., Oyola, S. O., Hilley, J. D., Brito, L. O., Tosi, L. R. O., Barrell, B., Cruz, A. K., Mottram, J. C., Smith, D. F., & Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics, 39, 839–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock, L., Ferris, V., Sharma, R., Sunter, J., Bailey, M., Carrington, M., & Gibson, W. (2011). Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proceedings of the National Academy of Sciences of the United States of America, 108, 3671–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock, L., Bailey, M., Carrington, M., & Gibson, W. (2014). Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Current Biology, 24, 1–6.

    Article  CAS  Google Scholar 

  • Peel, E., & Chardome, M. (1954). Trypanosoma suis Ochmann, 1905, a porcine trypanosome from the Belgian Congo with metacyclic development in the salivary glands of Glossina. Transactions of the Royal Society of Tropical Medicine and Hygiene, 48, 288.

    Google Scholar 

  • Perez-Morga, D., Vanhollebeke, B., Paturiaux-Hanocq, F., Nolan, D. P., Lins, L., Homble, F., Vanhamme, L., Tebabi, P., Pays, A., Poelvoorde, P., Jacquet, A., Brasseur, R., & Pays, E. (2005). Apolipoprotein L-1 promotes trypanosome lysis by forming pores in lysosomal membranes. Science, 309, 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Piscopo, T. V., & Mallia, A. C. (2006). Leishmaniasis. Postgraduate Medical Journal, 82, 649–657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podlipaev, S. (2001). The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. International Journal for Parasitology, 31, 648–652.

    Article  CAS  PubMed  Google Scholar 

  • Poinar, G., & Poinar, R. (2004). Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist, 155, 305–310.

    Article  PubMed  Google Scholar 

  • Porto-Carreiro, I., Attias, M., Miranda, K., De Souza, W., & Cunha-e-Silva, N. (2000). Trypanosoma cruzi epimastigote endocytic pathway: Cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. European Journal of Cell Biology, 79, 858–869.

    Article  CAS  PubMed  Google Scholar 

  • Poynton, S. L., Whitaker, B. R., & Heinrich, A. B. (2001). A novel trypanoplasm-like flagellate Jarrellia atramenti n. g., n. sp. (Kinetoplastida:Bodonidae) and ciliates from the blowhole of a stranded pygmy sperm whale Kogia breviceps (Physeteridae); morphology, life cycle and potential pathogenicity. Diseases of Aquatic Organisms, 44, 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Radwanska, M., Chamekh, M., Vanhamme, L., Claes, F., Magez, S., Magnus, E., De Baetselier, P., Buscher, P., & Pays, E. (2002a). The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. American Journal of Tropical Medicine and Hygiene, 67, 684–690.

    CAS  PubMed  Google Scholar 

  • Radwanska, M., Claes, F., Magez, S., Magnus, E., Perez-Morga, D., Pays, E., & Buscher, P. (2002b). Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. American Journal of Tropical Medicine and Hygiene, 67, 289–295.

    CAS  PubMed  Google Scholar 

  • Ravel, C., Cortes, S., Pratlong, F., Morio, F., Dedet, J. P., & Campino, L. (2006). First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. International Journal for Parasitology, 36, 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  • Roditi, I., Carrington, M., & Turner, M. (1987). Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature, 325, 272–274.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A. J., & Bates, P. A. (2004). Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, 430, 463–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roitman, C., Roitman, I., & Azevedo, H. P. (1972). Growth of an insect trypanosomatid at 37°C in a defined medium. Journal of Protozoology, 19, 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Moreno, M., Lasztity, D., Coppens, I., & Opperdoes, F. R. (1992). Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Molecular and Biochemical Parasitology, 54, 185–200.

    Article  CAS  PubMed  Google Scholar 

  • Santrich, C., Moore, L., Sherwin, T., Bastin, P., Brokaw, C., Gull, K., & LeBowitz, J. H. (1997). A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Molecular and Biochemical Parasitology, 90, 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Schenkman, S., Jiang, M. S., Hart, G. W., & Nussenzweig, V. (1991). A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell, 65, 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel, R., Salathe, R., Tognazzo, M., & Schmid-Hempel, P. (2011). Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. Infection, Genetics and Evolution, 11, 564–571.

    Article  PubMed  Google Scholar 

  • Schnaufer, A., Domingo, G. J., & Stuart, K. (2002). Natural and induced dyskinetoplastic trypanosomatids: How to live without mitochondrial DNA. International Journal for Parasitology, 32, 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  • Scott, V., Sherwin, T., & Gull, K. (1997). Gamma-Tubulin in trypanosomes: Molecular characterisation and localisation to multiple and diverse microtubule organising centres. Journal of Cell Science, 110, 157–168.

    CAS  PubMed  Google Scholar 

  • Shapiro, T. A., & Englund, P. T. (1995). The structure and replication of kinetoplast DNA. Annual Review of Microbiology, 49, 117–143.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, J. M., Feagin, J. E., Stuart, K., & Simpson, L. (1988). Editing of kinetoplastid mitochondrial messenger RNAs by uridine addition and deletion generates conserved amino-acid sequences and AUG initiation codons. Cell, 53, 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Sheader, K., Vaughan, S., Minchin, J., Hughes, K., Gull, K., & Rudenko, G. (2005). Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 102, 8716–8721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson, A. G. B., & Roger, A. J. (2004). Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Molecular Phylogenetics and Evolution, 30, 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, L., Thiemann, O. H., Savill, N. J., Alfonzo, J. D., & Maslov, D. A. (2000). Evolution of RNA editing in trypanosome mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 97, 6986–6993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson, A. G. B., Lukes, J., & Roger, A. J. (2002). The evolutionary history of kinetoplastids and their kinetoplasts. Molecular Biology and Evolution, 19, 2071–2083.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., Gill, E. E., Callahan, H. A., Litaker, R. W., & Roger, A. J. (2004). Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids. Protist, 155, 407–422.

    Article  PubMed  Google Scholar 

  • Singh, B. N., Lucas, J. J., Beach, D. H., & Costello, C. E. (1994). Expression of a novel cell surface lipophosphoglycan-like glycoconjugate in Trypanosoma cruzi epimastigotes. Journal of Biological Chemistry, 269, 21972–21982.

    CAS  PubMed  Google Scholar 

  • Sloof, P., Dehaan, A., Eier, W., Vaniersel, M., Boel, E., Vansteeg, H., & Benne, R. (1992). The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. Molecular and Biochemical Parasitology, 56, 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Solari, A. J. (1983). The ultrastructure of mitotic nuclei of Blastocrithidia triatomae. Zeitschrift für Parasitenkunde, 69, 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, J. R., Noyes, H., Dover, G. A., & Gibson, W. C. (1999a). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology, 118, 107–116.

    Article  PubMed  Google Scholar 

  • Stevens, J. R., Teixeira, M. M. G., Bingle, L. E. H., & Gibson, W. C. (1999b). The taxonomic position and evolutionary relationships of Trypanosoma rangeli. International Journal for Parasitology, 29, 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Stolba, P., Jirku, M., & Lukes, J. (2001). Polykinetoplast DNA structure in Dimastigella trypaniformis and Dimastigella mimosa (Kinetoplastida). Molecular and Biochemical Parasitology, 113, 323–326.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, K. D., Schnaufer, A., Ernst, N. L., & Panigrahi, A. K. (2005). Complex management: RNA editing in trypanosomes. Trends in Biochemical Sciences, 30, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Sturm, N. R., Maslov, D. A., Grisard, E. C., & Campbell, D. A. (2001). Diplonema spp. possess spliced leader RNA genes similar to the Kinetoplastida. Journal of Eukaryotic Microbiology, 48, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam, C., Veazey, P., Seth, R., Hayes-Sinclair, J., Chambers, E., Carrington, M., Gull, K., Matthews, K., Horn, D., & Field, M. C. (2006). Chromosome-wide analysis of gene function by RNA interference in the African trypanosome. Eukaryotic Cell, 5, 1539–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarleton, R. L., & Zhang, L. (1999). Chagas disease etiology: Autoimmunity or parasite persistence? Parasitology Today, 15, 94–99.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, A. E. R., & Baker, J. R. (1978). Methods of cultivating parasites in vitro. London: Academic.

    Google Scholar 

  • Taylor, J. E., & Rudenko, G. (2006). Switching trypanosome coats: What’s in the wardrobe? Trends in Genetics, 22, 614–620.

    Article  CAS  PubMed  Google Scholar 

  • Telford, S. R. (1995). Kinetoplastid hemoflagellates of reptiles. In J. P. Kreier (Ed.), Parasitic protozoa (Vol. 10, pp. 161–223). London: Academic.

    Chapter  Google Scholar 

  • Tetley, L., & Vickerman, K. (1985). Differentiation in Trypanosoma brucei: Host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. Journal of Cell Science, 74, 1–19.

    CAS  PubMed  Google Scholar 

  • Titus, R. G., & Ribeiro, J. M. (1988). Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science, 239, 1306–1308.

    Article  CAS  PubMed  Google Scholar 

  • Trager, W. (1974). Nutrition and biosynthetic capabilities of flagellates. In Trypanosomiasis and leishmaniasis with special reference to Chagas disease (pp. 225–245). Amsterdam: Associated Scientific Publishers.

    Google Scholar 

  • Urbina, J. A. (2010). Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Tropica, 115, 55–68.

    Article  PubMed  Google Scholar 

  • Utz, S., Roditi, I., Renggli, C. K., Almeida, I. C., Acosta-Serrano, A., & Butikofer, P. (2006). Trypanosoma congolense procyclins: Unmasking cryptic major surface glycoproteins in procyclic forms. Eukaryotic Cell, 5, 1430–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Abbeele, J., Claes, Y., Van Bockstaele, D., Le Ray, D., & Coosemans, M. (1999). Trypanosoma brucei spp. development in the tsetse fly: Characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology, 118, 469–478.

    Article  Google Scholar 

  • van Luenen, H. G. A. M., Farris, C., Jan, S., Genest, P.-A., Tripathi, P., Velds, A., Kerkhoven, R. M., Nieuwland, M., Haydock, A., Ramasamy, G., Vainio, S., Heidebrecht, T., Perrakis, A., Pagie, L., van Steensel, B., Myler, P. J., & Borst, P. (2012). Glucosylated hydroxymethyluracil, DNA Base J, prevents transcriptional readthrough in Leishmania. Cell, 150, 909–921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanhamme, L., Paturiaux-Hanocq, F., Poelvoorde, P., Nolan, D., Lins, L., Van den Abbeele, J., Pays, A., Tebabi, P., Xong, H., Jacquet, A., Moguilevsky, N., Dieu, M., Kane, J. P., De Baetselier, P., Brasseur, R., & Pays, E. (2003). Apolipoprotein L-1 is the trypanosome lytic factor of human serum. Nature, 422, 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Vanhollebeke, B., De Muylder, G., Nielsen, M. J., Pays, A., Tebabi, P., Dieu, M., Raes, M., Moestrup, S. K., & Pays, E. (2008). A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science, 320, 677–681.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan, S., Kohl, L., Ngai, I., Wheeler, R. J., & Gull, K. (2008). A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist, 159, 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science, 5, 163–194.

    CAS  PubMed  Google Scholar 

  • Vickerman, K. (1973). The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes. Journal of Protozoology, 20, 394–404.

    Article  CAS  PubMed  Google Scholar 

  • Vickerman, K. (1976). The diversity of the kinetoplastid flagellates. In W. H. R. Lumsden & D. A. Evans (Eds.), Biology of the kinetoplastida. London: Academic.

    Google Scholar 

  • Vickerman, K. (1977). DNA throughout the single mitochondrion of a kinetoplastid flagellate: Observations on the ultrastructure of Cryptobia vaginalis (Hesse, 1910). Journal of Protozoology, 24, 221–233.

    Article  CAS  Google Scholar 

  • Vickerman, K. (1978). The free-living trypanoplasms: Descriptions of three species of the genus Procryptobia n.g. and re-description of Dimastigella trypaniformis Sandon, with notes on their relevance to the microscopical diagnosis of disease in men and animals. Transactions of the American Microscopical Society, 97, 485–502.

    Article  CAS  PubMed  Google Scholar 

  • Vickerman, K. (1985). Developmental cycles and biology of pathogenic trypanosomes. British Medical Bulletin, 41, 105–114.

    CAS  PubMed  Google Scholar 

  • Vickerman, K. (1990). Phylum Zoomastigina; class Kinetoplastida. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista (pp. 215–238). Boston: Jones and Bartlett.

    Google Scholar 

  • Vickerman, K., & Preston, T. M. (1976). Comparative cell biology of kinetoplastid flagellates. In W. H. R. Lumsden & D. A. Evans (Eds.), Biology of the kinetoplastida (Vol. 1, pp. 35–130). London: Academic.

    Google Scholar 

  • von der Heyden, S., & Cavalier-Smith, T. (2005). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. International Journal of Systematic and Evolutionary Microbiology, 55, 2605–2621.

    Article  PubMed  CAS  Google Scholar 

  • von der Heyden, S., Chao, E. E., Vickerman, K., & Cavalier-Smith, T. (2004). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. Journal of Eukaryotic Microbiology, 51, 402–416.

    Article  PubMed  Google Scholar 

  • Wallace, F. G. (1966). The trypanosomatid parasites of insects and arachnids. Experimental Parasitology, 18, 124–193.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, F. G. (1979). Biology of the kinetoplastida of arthropods. In W. H. R. Lumsden & D. A. Evans (Eds.), Biology of the kinetoplastida (Vol. 2, pp. 213–240). London: Academic.

    Google Scholar 

  • Wallace, F. G., Roitman, I., & Camargo, E. P. (1992). Trypanosomatids of plants. In J. P. Kreier & J. R. Baker (Eds.), Parasitic protozoa (Vol. 2, pp. 55–84). London: Academic.

    Chapter  Google Scholar 

  • Westenberger, S. J., Cerqueira, G. C., El-Sayed, N. M., Zingales, B., Campbell, D. A., & Sturm, N. R. (2006). Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics, 7, 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO. (2013a). Chagas disease (American trypanosomiasis). World Health Organisation, Geneva. Factsheet 340. Updated Mar 2013.

    Google Scholar 

  • WHO. (2013b). Human African trypanosomiasis. World Health Organisation, Geneva.

    Google Scholar 

  • WHO. (2013c). Leishmaniasis. World Health Organisation, Geneva. Factsheet 375. Updated Feb 2013.

    Google Scholar 

  • Wiemer, E. A. C., Hannaert, V., Van den Ijssel, P. R. L. A., Van Roy, J., Opperdoes, F. R., & Michels, P. A. M. (1995). Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: An evolutionary scenario of subcellular compartmentation in Kinetoplastida. Journal of Molecular Evolution, 40, 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Woo, P. T. K. (1994). Flagellate parasites of fish. In J. P. Kreier (Ed.), Parasitic protozoa (Vol. 8, pp. 1–80). London: Academic.

    Chapter  Google Scholar 

  • Wright, A. D. G., Li, S., Feng, S. J., Martin, D. S., & Lynn, D. H. (1999). Phylogenetic position of the kinetoplastids Cryptobia bullocki, Cryptobia catostomi, and Cryptobia salmositica and monophyly of the genus Trypanosoma inferred from small subunit ribosomal RNA sequences. Molecular and Biochemical Parasitology, 99, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Yabuki, A., & Tame, A. (2015). Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrachter & Schnepf, 1996. Journal of Eukaryotic Microbiology, 62, 426–429.

    Article  PubMed  Google Scholar 

  • Zingales, B., Andrade, S. G., Briones, M. R. S., Campbell, D. A., Chiari, E., Fernandes, O., Guhl, F., Lages-Silva, E., Macedo, A. M., Machado, C. R., Miles, M. A., Romanha, A. J., Sturm, N. R., Tibayrenc, M., & Schijman, A. G. (2009). A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Memórias do Instituto Oswaldo Cruz, 104, 1051–1054.

    Article  CAS  PubMed  Google Scholar 

  • Zingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution, 12, 240–253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gibson, W. (2016). Kinetoplastea. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics