Skip to main content

Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and Others)

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

The Amoebozoans included here are amoeboid protists that locomote by forward flowing of the internal cytoplasm and protrusion of peripheral, fingerlike or fan-shaped pseudopodia, excluding the myxomycetes and other slime molds, and Archamoebae, which lack classical mitochondria. These lobose Amoebozoa are an eclectic collection of amoeboid organisms. Some are naked without any surface covering, while other species may have a thin organic surface coat (glycocalyx) or delicate scales deposited on the outer cell membrane, with shapes that are species specific. Lobose testate amoebae are enclosed within an organic or mineralized shell (test) with an oral aperture where the tubular pseudopodia emerge. The lobose Amoebozoans consume prey (e.g., bacteria, algae, smaller protists, yeast, etc.) by phagocytosis. They are widely distributed globally in aquatic and terrestrial environments. They become dormant cysts under unfavorable conditions, such as lack of adequate food or drying of the environment, but excyst and become active when environmental conditions improve or form freeze-resistant, winter resting stages that are not encysted in some soil-dwelling amoebae in temperate regions. The Amoebozoan lobose amoebae are significant members of aquatic and terrestrial microbial communities and serve as important linkages in food webs between microbes and higher organisms, such as invertebrates. Like other Amoebozoa, the lobose amoebae typically have tubular mitochondrial cristae, which partially distinguish them from the Heterolobosean amoebae, with discoidal/flattened cristae. Molecular phylogenetic evidence indicates that Amoebozoans are monophyletic, with most, but not all, lobose amoebae falling into one of two subclades: Tubulinea (which includes the lobose testate amoebae or Arcellinida) and Discosea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adl, M. S., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher-level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.

    Article  PubMed  Google Scholar 

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukes, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., LeGall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Standridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilera, A., Souza-Egipsy, V., Gomez, F., & Amils, R. (2007). Development and structure of eukaryotic biofilms in an extreme acidic environment, Rio Tinto (SW, Spain). Microbial Ecology, 53, 294–305.

    Article  PubMed  Google Scholar 

  • Amaral Zettler, L. A., Messerli, M. A., Laatsch, A. D., Smith, P. J. S., & Sogin, M. L. (2003). From genes to genomes: Beyond biodiversity in Spain’s Rio Tinto. Biological Bulletin, 204, 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, O. R. (1977). Fine structure of a marine amoeba associated with a blue-green alga in the Sargasso Sea. Journal of Protozoology, 24, 370–376.

    Article  Google Scholar 

  • Anderson, O. R. (1987). Fine structure of a silica-biomineralizing testate amoeba, Netzelia tuberculata. Journal of Protozoology, 34, 302–309.

    Article  Google Scholar 

  • Anderson, O. R. (1988a). Fine structure of silica deposition and origin of shell components in the testate amoeba Netzelia tuberculata. Journal of Protozoology, 35, 204–211.

    Article  Google Scholar 

  • Anderson, O. R. (1988b). Comparative protozoology: Ecology, physiology, life history. Berlin: Springer.

    Book  Google Scholar 

  • Anderson, O. R. (1997). Annual abundances, diversity and growth potential of gymnamoebae in a shallow freshwater pond. Journal of Eukaryotic Microbiology, 44, 393–398.

    Article  Google Scholar 

  • Anderson, O. R. (1998). Densities and diversity of gymnamoebae in relation to some inshore aquatic habitats at Bermuda. Journal of Eukaryotic Microbiology, 45, 151–155.

    Article  Google Scholar 

  • Anderson, O. R. (2000). Abundance of terrestrial gymnamoebae at a northeastern U. S. site: A four-year study, including the El Niño winter of 1997-1998. Journal of Eukaryotic Microbiology, 47, 148–155.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, O. R. (2002). Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: Evidence of microbiocoenoses. Journal of Eukaryotic Microbiology, 49, 17–23.

    Article  PubMed  Google Scholar 

  • Anderson, O. R. (2003). A model of biocomplexity and its application to the analysis of some terrestrial and marsh eukaryotic microbial communities with an emphasis on amoeboid protists. Journal of Eukaryotic Microbiology, 50, 86–91.

    Article  PubMed  Google Scholar 

  • Anderson, O. R. (2007). A seasonal study of the carbon content of planktonic naked amoebae in the Hudson Estuary and in a productive freshwater pond with comparative data for ciliates. Journal of Eukaryotic Microbiology, 54, 388–391.

    Article  PubMed  Google Scholar 

  • Anderson, O. R. (2008). The Role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: Biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. Journal of Eukaryotic Microbiology, 55, 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, O. R. (2009). Eukaryotic microbial communities associated with the rhizosphere of the temperate fern Thelypteris noveboracensis (L.) Nieuwl. American Fern Journal, 99, 176–182.

    Article  Google Scholar 

  • Anderson, O. R. (2010). Field and laboratory studies of encysted and trophic stages of naked amoebae with a revised perspective on population life cycle dynamics. Acta Protozoologica, 49, 1–8.

    Google Scholar 

  • Anderson, O. R. (2011). Particle-associated planktonic naked amoebae in the Hudson Estuary: Size-fraction related densities, cell sizes and estimated carbon content. Acta Protozoologica, 50, 15–22.

    Google Scholar 

  • Anderson, O. R. (2012). The fate of organic sources of carbon in moss-rich tundra soil microbial communities: A laboratory experimental study. Journal of Eukaryotic Microbiology, 59, 564–570.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, O. R. (2013). Naked amoebae in biofilms collected from a temperate freshwater pond. Journal of Eukaryotic Microbiology, 60, 429–431.

    Article  PubMed  Google Scholar 

  • Anderson, O. R. (2014). Microbial communities associated with tree bark foliose lichens: A perspective on their microecology. Journal of Eukaryotic Microbiology, 61, 364–370.

    Article  PubMed  Google Scholar 

  • Anderson, O. R. (2016). Experimental evidence for non-encysted, freeze-resistant stages of terrestrial naked amoebae capable of resumed growth after freeze-thaw events. Acta Protozoologica, 55, 19–25.

    Google Scholar 

  • Anderson, O. R., & Griffin, K. (2001). Abundances of protozoa in soil of laboratory-grown wheat plants cultivated under low and high atmospheric CO2 concentrations. Protistology, 2, 76–84.

    Google Scholar 

  • Anderson, O. R., & Rogerson, A. (1995). Annual abundances and growth potential of gymnamoebae in the Hudson Estuary with comparative data from the Firth of Clyde. European Journal of Protistology, 31, 223–233.

    Article  Google Scholar 

  • Armstrong, E., Rogerson, A., & Leftley, J. W. (2000). The abundance of heterotrophic protists associated with intertidal seaweeds. Estuarine, Coastal and Shelf Science, 50, 415–424.

    Article  Google Scholar 

  • Arndt, H. (1993). A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Marine Microbial Food Webs, 7, 3–29.

    Google Scholar 

  • Auran, J. D., Starr, M. B., & Jakobiec, F. A. (1987). Acanthamoeba keratitis: A review of the literature. Cornea, 6, 2–26.

    Article  CAS  PubMed  Google Scholar 

  • Bamforth, S. (1985). Ecology of protozoa. In J. J. Lee, S. H. Hutner, & E. C. Bovee (Eds.), Illustrated guide to the protozoa (pp. 8–15). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Berney, C., Geisen, S., Van Wichelen, J., Nitsche, F., Vanormelingen, P., Bonkowski, M., & Bass, D. (2015). Expansion of the ‘Reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist, 166, 271–295.

    Article  PubMed  Google Scholar 

  • Beyens, L., Ledeganck, P., Graae, B. J., & Nijs, I. (2009). Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuag, West Greenland). Polar Biology, 32, 453–462.

    Article  Google Scholar 

  • Bischoff, P. J. (2002). An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozoologica, 41, 183–189.

    Google Scholar 

  • Bonilla-Lemus, P., Villegas, A. S. C., Jiménez, J. C., & Vázquez, A. L. (2014). Occurrence of free-living amoebae in streams of the Mexico Basin. Experimental Parasitology, 145, 528–533.

    Article  Google Scholar 

  • Bonkowski, M., & Brandt, F. (2002). Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry, 34, 1709–1715.

    Article  CAS  Google Scholar 

  • Bonkowski, M., Jentschke, G., & Scheu, S. (2001). Contrasting effects of microbial partners in the rhizosphere: Interactions between Norway Spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Applied Soil Ecology, 18, 193–204.

    Article  Google Scholar 

  • Bovee, E. C. (1979). Protozoa from acid-bog mosses and forest mosses of the Lake Itasca region (Minnesota, USA). University of Kansas Scientific Bulletin, 51, 615–629.

    Google Scholar 

  • Bovee, E. C. (1985a). Class Lobosea Carpenter, 1861. In J. J. Lee, S. H. Hutner, & E. C. Bovee (Eds.), Illustrated guide to the protozoa (pp. 158–211). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Bovee, E. C. (1985b). Class Filosea Leidy, 1879. In J. J. Lee, S. H. Hutner, & E. C. Bovee (Eds.), Illustrated guide to the protozoa (pp. 228–245). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Bovee, E. C., & Jahn, T. L. (1973). Taxonomy and phylogeny. In K. W. Jeon (Ed.), The biology of amoeba (pp. 37–82). New York: Academic Press.

    Chapter  Google Scholar 

  • Bradley, W. H. (1931). Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah. U.S. Geological Survey Professional Paper, 168, 1–58.

    Google Scholar 

  • Brown, S., & Smirnov, A. V. (2004). Diversity of gymnamoebae in grassland soil in Southern Scotland. Protistology, 3, 191–195.

    Google Scholar 

  • Cann, J. P. (1981). An ultrastructural study of Mayorella viridis Amoebida Paramoebidae a rhizopod containing zoochlorellae. Archiv für Protistenkunde, 124, 353–360.

    Article  Google Scholar 

  • Cash, J., Wailes, G. H., & Hopkinson, J. (1905/1909/1915). The British freshwater Rhizopoda and Heliozoa. The Ray Society, 1, 1–148; 2, 1–166; 3, 1–156.

    Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., Snell, E. A., Berney, C., Fiore-Donno, A. M., & Lewis, R. (2014). Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution, 81, 71–85.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Fiore-Donno, A. M., Chao, E. E., Kudryavtsev, A., Berney, C., Snell, E. A., & Lewis, R. (2015). Multigene phylogeny resolves deep branching of Amoebozoa. Molecular Phylogenetics and Evolution, 83, 293–304.

    Article  PubMed  Google Scholar 

  • Chatton, E. (1953). Classe des Lobosa. Ordre des Amoebiens Nus ou Amoebaea. In P.-P. Grassé (Ed.), Traité de Zoologie, part 2 (Vol. 1, pp. 5–91). Paris: Masson et Cie.

    Google Scholar 

  • Clarholm, M. (1981). Protozoan grazing of bacteria in soil – Impact and importance. Microbial Ecology, 7, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, K. J. (2003). Guide to the identification of soil protozoa – Testate amoebae. Windermere: Freshwater Biological Association.

    Google Scholar 

  • Coûteaux, M.-M., Faurie, G., Palka, L., & Steinberg, C. (1988). Le relation prêdateur – proi (Protozoaires – bactêries) dans les sols: Role dans la regulation des populations et consequences sur les cycles du carbone et de Pazote. Revue d’Ecologie et Biologie du Sol, 25, 1–31.

    Google Scholar 

  • Cowie, P. R., & Hannah, F. (2006). Responses of four isolates of marine naked amoebae to reductions in salinity. Journal of Experimental Marine Biology and Ecology, 337, 196–204.

    Article  CAS  Google Scholar 

  • Cowling, A. J. (1994). Protozoan distribution and adaptation. In J. Darbyshire (Ed.), Soil protozoa (pp. 5–42). Wallingford: CAB International.

    Google Scholar 

  • De Saedeleer, H. (1932). Notes de protistologie. V. Recherches sur les pseudopods des Rhizopodes Testacés. Les concepts pseudopodoes lobosa, filosa, et granulo-reticulosa. Archives de Zoologie Expérimentale et Générale, 74, 597–626.

    Google Scholar 

  • Decamp, O., Tsujino, M., & Kamiyama, T. (1999). Abundance of naked amoebae in sediments of Hiroshima Bay, Seto Inland Sea of Japan. Journal of Eukaryotic Microbiology, 46, 160–164.

    Article  Google Scholar 

  • Deflandre, G. (1953). Ordres des Testacealobosa, Testaceafilosa Thalamia ou Thécamoebiens (Rhizopoda Testacea). In P.-P. Grassé (Ed.), Traité de Zoologie, Vol. 1, part 2 (pp. 97–148). Paris: Masson et Cie.

    Google Scholar 

  • Fenchel, T. (1985). Ecology of protozoa: The biology of free-living phagotrophic protists. Berlin: Springer.

    Google Scholar 

  • Foissner, W. (1987). Soil protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators and guide to the literature. Progress in Protistology, 2, 69–212.

    Google Scholar 

  • Geisen, S., Bandow, C., Römbke, J., & Bonkowski, M. (2014). Soil water availability strongly alters the community composition of soil protists. Pedobiologia, 57, 205–213.

    Article  Google Scholar 

  • Gu, M., Feng, W., & Shen, Y. (1988). Ecological study on protozoa in the sediment of the Three-Gorges area of the Changjiang River China. Chinese Journal of Oceanology and Limnology, 6, 272–280.

    Article  Google Scholar 

  • Hauer, G., & Rogerson, A. (2005). Remarkable salinity tolerance of seven species of naked amoebae (gymnamoebae). Hydrobiologia, 549, 33–42.

    Article  Google Scholar 

  • Heal, O. W. (1964). Observations on the seasonal and spatial distribution of Testacea (Protozoa: Rhizopoda) in Sphagnum. Journal of Animal Ecology, 33, 395–412.

    Article  Google Scholar 

  • Hungate, B. A., Jaeger III, C. H., Gamara, G., Chapin III, F. S., & Field, C. B. (2000). Soil microbiota in two annual grasslands: Responses to elevated atmospheric CO2. Oecologia, 124, 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, K. W., & Jeon, M. S. (1976). Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components. Journal of Cellular Physiology, 89, 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, K. W., & Lorch, I. J. (1967). Unusual intra-cellular bacterial infections in large, free-living amoebae. Experimental Cell Research, 48, 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Jepps, M. W. (1956). The protozoa, sarcodina. London: Oliver and Boyd.

    Google Scholar 

  • Juhl, A., & Anderson, O. R. (2014). Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuarine, Coastal and Shelf Science, 151, 45–53.

    Article  Google Scholar 

  • Kiss, A. K., Acs, E., Kiss, K. T., & Torok, J. K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). European Journal of Protistology, 45, 121–138.

    Article  PubMed  Google Scholar 

  • Kudo, R. R. (1966). Protozoology (5th ed.). Springfield: Charles C. Thomas.

    Google Scholar 

  • Kudryavtsev, A. (2006). “Minute” species of Cochliopodium (Himatismenida): Description of three new fresh- and brackish-water species with a new diagnosis for Cochliopodium minus Page, 1976. European Journal of Protistology, 42, 77–89.

    Article  PubMed  Google Scholar 

  • Kudryavtsev, A., & Pawlowski, J. (2013). Squamamoeba japonica n. g. n. sp. (Amoebozoa): A deep-sea amoeba form the Sea of Japan with a novel cell coat structure. Protist, 164, 13–23.

    Article  PubMed  Google Scholar 

  • Kudryavtsev, A., & Pawlowski, J. (2015). Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. European Journal of Protistology, 51, 197–209.

    Article  PubMed  Google Scholar 

  • Kudryavtsev, A., Wylezich, C., Schlegel, M., Walochnik, J., & Michel, R. (2009). Ultrastructure, SSU rRNA Gene Sequences and Phylogenetic Relationships of Flamella Schaeffer, 1926 (Amoebozoa), with Description of Three New Species. Protist, 160, 21–40.

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtsev, A., Brown, M. W., Tice, A., Spiegel, F. W., Pawlowski, J., & Anderson, O. R. (2014). A revision of the order Pellitida Smirnov et al., 2011 comprising Pellita, Endostelium and Gocevia (Amoebozoa, Discosea), based on ultrastructural and molecular evidence, including Endostelium crystalliferum n. sp. Protist, 165, 208–229.

    Article  PubMed  Google Scholar 

  • Kyle, D. E., & Noblet, G. P. (1986). Seasonal distribution of thermotolerant free-living amoebae I. Willard’s Pond South Carolina USA. Journal of Protozoology, 33, 422–434.

    Article  CAS  PubMed  Google Scholar 

  • Kyle, D. E., & Noblet, G. P. (1987). Seasonal distribution of thermotolerant free-living amoebae II. Lake Issaqueena South Carolina USA. Journal of Protozoology, 34, 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Lahr, D. J. G., & Lopes, S. G. B. C. (2006). Morphology, biometry, ecology and biogeography of five species of Difflugia Leclere, 1815 (Arcellinida: Difflugiidae), from Tiete River, Brazil. Acta Protozoologica, 45, 77–90.

    Google Scholar 

  • Lahr, D. J. G., & Lopes, S. G. B. C. (2007). Ultra-structure and biometry of three lobose testate amoebae of the Family Lesquereusiidae (Tubulinea: Arcellinida) based on specimens from Sao Paulo, Brazil. Acta Protozoologica, 46, 339–348.

    Google Scholar 

  • Lahr, D. J. G., Grant, J., Nguyen, T., Lin, J. H., & Katz, L. A. (2011). Comprehensive phylogenetic reconstruction of Amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PLoS ONE, 6(7), e22780. doi:10.1371/journal.pone.0022780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahr, D. J. G., Kubik, G. M., Gant, A. L., Grant, J., Anderson, O. R., & Katz, L. A. (2012). Morphological description of Telaepolella tubasferens n. g., n. sp., isolate ATCC© 50593™, a filose amoeba in the Gracilipodida, Amoebozoa. Acta Protozoologica, 51, 305–318.

    Google Scholar 

  • Laybourn-Parry, J., Marchant, H. J., & Brown, P. E. (1992). Seasonal cycle of the microbial plankton in Crooked Lake, Antarctica. Polar Biology, 12, 411–416.

    Google Scholar 

  • Lee, J. J., Leedale, G. F., & Bradbury, P. (Eds.). (2002). Illustrated guide to the protozoa (2nd ed.). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Lei, Y.-L., Stumm, K., Wickham, S. A., & Berninger, U.-G. (2014). Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. Journal of Eukaryotic Microbiology, 61, 493–508.

    Article  CAS  PubMed  Google Scholar 

  • Leidy, J. (1879). Freshwater Rhizopods of North America. Washington: U. S. Geological Survey.

    Google Scholar 

  • Lesen, A. E., Juhl, A. R., & Anderson, O. R. (2010). Abundance and biomass of heterotrophic microplankton in the lower Hudson River Estuary, USA: Potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquatic Microbial Ecology, 61, 45–56.

    Article  Google Scholar 

  • Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Honigberg, B. M., Leedale, G. F., Loeblich III, A. R., Lom, J., Lynn, D., Merinfeld, E. G., Page, F. C., Poljansky, G., Sprague, V., Vávra, J., & Wallace, F. G. (1980). A newly revised classification of the Protozoa. Journal of Protozoology, 27, 37–58.

    Article  CAS  PubMed  Google Scholar 

  • Loeblich Jr., A. R., & Tappan, H. (1964). Sarcodina. Chiefly “Thecamoebians” and Foraminiferida. In R. C. Moore (Ed.), Treatise on invertebrate paleontology, Vol. 1, part C, Protista 2 (pp. C1–C54). Lawrence: University of Kansas Press.

    Google Scholar 

  • Lousier, J. D. (1982). Colonization of decomposing deciduous leaf litter by Testacea (Protozoa, Rhizopoda): Species succession, abundance and biomass. Oecologia, 52, 381–388.

    Article  PubMed  Google Scholar 

  • Margulis, L. (1981). Symbiosis in cell evolution. San Francisco: W. H. Freeman and Co..

    Google Scholar 

  • Margulis, L., & Schwartz, K. V. (1988). Five kingdoms. An illustrated guide to the phyla of life on Earth. San Francisco: W. H. Freeman.

    Google Scholar 

  • Maybruck, B. T., & Rogerson, A. (2004). Protozoan epibionts on the prop roots of the Red Mangrove Tree, Rhizophora mangle. Protistology, 3, 265–272.

    Google Scholar 

  • Mayes, D. F., Rogerson, A., Marchant, H. J., & Laybourn-Parry, J. (1998). Temporal abundance of naked bacterivore amoebae in coastal east Antarctica. Estuarine, Coastal and Shelf Science, 46, 565–572.

    Article  Google Scholar 

  • Miesterfeld, R. (1977). Die horizontale und vertikale Verteilung der Testaceen (Rhizopoda, Testacea) in Sphagnum. Archiv für Hydrobiologia, 79, 319–356.

    Google Scholar 

  • Miesterfeld, R. (2002a). Order Arcellinida Kent, 1880. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (2nd ed., pp. 827–860). Lawrence, Kansas: Society of Protozoologists.

    Google Scholar 

  • Miesterfeld, R. (2002b). Testate amoebae with filopodia. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (2nd ed., pp. 1054–1084). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Minge, M. A., Silberman, J. D., Orr, R. J. S., Cavalier-Smith, T., Shalchian-Tabrizi, K., Burki, F., Skjaeveland, A., & Jakobsen, K. S. (2009). Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proceedings of the Royal Society Biological Sciences, Series B, 276, 597–604.

    Article  CAS  Google Scholar 

  • Moran, D. M., Anderson, O. R., Dennett, M. R., Caron, D. A., & Gast, R. J. (2007). A description of seven Antarctic marine gymnamoebae including a new subspecies and a new genus: Neoparamoeba aestuarina antarctica n. subsp., Platyamoeba oblongata n. sp., Platyamoeba contorta n. sp. and Vermistella antarctica n. gen. n. sp. Journal of Eukaryotic Microbiology, 54, 169–183.

    Article  PubMed  Google Scholar 

  • Ogden, C. G., & Hedley, R. H. (1980). An atlas of freshwater testate amoebae. Oxford: Oxford University Press.

    Google Scholar 

  • Page, F. C. (1976). A revised classification of the Gymnamoeba (Protozoa: Sarcodina). Zoological Journal of the Linnean Society, 58, 61–77.

    Article  Google Scholar 

  • Page, F. C. (1981). Mayorella Schaeffer, 1926, and Hollandella n. g. (Gymnamoeba), distinguished by their surface structure and other characters, with comparison of three species. Protistolgoica, 17, 543–562.

    Google Scholar 

  • Page, F. C. (1983). Marine Gymnamoebae. Cambridge: Institute of Terrestrial Ecology.

    Google Scholar 

  • Page, F. C. (1988). A new key to freshwater and soil gymnamoebae. Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Paps, J., Medina-Chacón, L. A., Marshall, W., Suga, H., & Ruiz-Trillo, I. (2013). Molecular phylogeny of unikonts: New insights into the position of Apusomonads and Ancyromonads and the internal relationships of Opisthokonts. Protist, 164, 2–12.

    Article  PubMed  Google Scholar 

  • Patterson, D. J., Simpson, A. G. B., & Rogerson, A. (2002). Amoebae of uncertain affinities. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (2nd ed., pp. 804–827). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Pawlowski, J. (2009). Untangling the phylogeny of amoeboid protists. Journal of Eukaryotic Microbiology, 56, 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Penard, E. (1902). Faune Rhizopodique du Bassin du Léman. Geneva: H. Kundig.

    Book  Google Scholar 

  • Porter, S. M., & Knoll, A. H. (2000). Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26, 360–385.

    Article  Google Scholar 

  • Porter, S. M., Meisterfeld, R., & Knoll, A. H. (2003). Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. Journal of Paleontology, 77, 409–429.

    Article  Google Scholar 

  • Robinson, B. S., Bamforth, S. S., & Dobson, P. J. (2002). Density and diversity of protozoa in some arid Australian soils. Journal of Eukaryotic Microbiology, 49, 449–453.

    Article  PubMed  Google Scholar 

  • Rodriguez-Zaragoza, S. (1994). Ecology of free-living amoebae. Critical Reviews in Microbiology, 20, 225–241.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Zaragoza, S., & Mayzlish, E. (2005). Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microbial Ecology, 49, 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Zaragoza, S., Mayzlish, E., & Steinberger, Y. (2005). Vertical distribution of the free-living amoeba population in soil under desert shrubs in the Negev Desert, Israel. Applied and Environmental Microbiology, 71, 2053–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson, A. (1991). On the abundance of Marine naked amoebae on the surfaces of five species of macroalgae. FEMS Microbiology Ecology, 85, 301–312.

    Article  Google Scholar 

  • Rogerson, A., & Laybourn Parry, J. (1992). The abundance of marine naked amoebae in the water column of the Clyde Estuary. Estuarine, Coastal and Shelf Science, 34, 187–196.

    Article  Google Scholar 

  • Rogerson, A., & Patterson, D. J. (2002). The naked ramicristate amoebae (Gymnamoebae). In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (2nd ed., pp. 1023–1052). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Rogerson, A., Anderson, O. R., & Vogel, C. (2003). Are planktonic naked amoebae predominately floc associated or free in the water column? Journal of Plankton Research, 25, 1359–1365.

    Article  Google Scholar 

  • Rønn, R., Gavito, M., Larsen, J., Jakobsen, I., Frederiksen, H., & Christensen, S. (2002). Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biology and Biochemistry, 34, 923–932.

    Article  Google Scholar 

  • Rønn, R., Ekelund, F., & Christensen, S. (2003). Effects of elevated atmospheric CO2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant and Soil, 251, 13–21.

    Article  Google Scholar 

  • Sandon, H. (1927). The composition and distribution of the protozoan fauna of the soil. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Sawyer, T. K. (1980). Marine amebae from clean and stressed bottom sediments of the Atlantic Ocean and Gulf of Mexico. Journal of Protozoology, 27, 13–32.

    Article  Google Scholar 

  • Schaeffer, A. A. (1926). Taxonomy of the amebas with descriptions of thirty-nine new marine and freshwater species (p. 24). Washington, DC: Papers from the Department of Marine Biology of the Carnegie Institution.

    Google Scholar 

  • Schaudinn, F. (1899). Untersuchungen uber den Generationswechsel von Trichosphaerium sieboldi Schn. In Abhandlungen der Königlich Preussischen Akademie der Wissenschaften Berlin: Supplement (p. 93). Berlin: Königliche Akademie der Wissenschaften.

    Google Scholar 

  • Schönborn, W. (1989). The topophenetic analysis as a method to elucidate the phylogeny of testate amoebae Protozoa Testacealobosa and Testaceafilosia. Archiv für Protistenkunde, 137, 223–245.

    Article  Google Scholar 

  • Schuster, F. L. (1979). Small amebas and ameboflagellates. In M. Levandowsky & S. H. Hutner (Eds.), Biochemistry and physiology of protozoa (Vol. 1, 2nd ed., pp. 215–285). New York: Academic Press.

    Chapter  Google Scholar 

  • Schuster, F. L. (1990). Phylum Rhizopoda. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista (pp. 3–18). Boston: Jones and Bartlett.

    Google Scholar 

  • Sheridan, C. C., Steinberg, D. K., & Kling, G. W. (2002). The microbial and metazoan community associated with colonies of Trichodesmium spp.: A quantitative survey. Journal of Plankton Research, 24, 913–922.

    Article  Google Scholar 

  • Smirnov, A. V. (2002). Vertical distribution and abundance of gymnamoebae (Rhizopoda) in bottom sediments of the brackish water Niva Bay (Baltic Sea, The Sound). Protist, 153, 239–250.

    Article  PubMed  Google Scholar 

  • Smirnov, A. V. (2008). Amoebas, Lobose. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 558–577). Oxford: Elsevier.

    Google Scholar 

  • Smirnov, A. V., & Brown, S. (2004). Guide to the methods of study and identification of soil gymnamoebae. Protistology, 3, 148–190.

    Google Scholar 

  • Smirnov, A. V., & Kudryavtsev, A. A. (2005). Pellitidae n. fam. (Lobosea, Gymnamoeba) – A new family, accommodating two amoebae with an unusual cell coat and an original mode of locomotion, Pellita catalonica n.g., n. sp. and Pellita digitata comb. nov. European Journal of Protistology, 41, 257–267.

    Article  Google Scholar 

  • Smirnov, A. V., & Thar, R. (2003). Spatial distribution of gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist, 154, 359–369.

    Article  PubMed  Google Scholar 

  • Smirnov, A. V., & Thar, R. (2004). Vertical distribution of gymnamoebae (Rhizopoda, Lobosea) in the top layer of brackish-water sediments. Protist, 155, 437–446.

    Article  PubMed  Google Scholar 

  • Smirnov, A. V., Nassonova, E., Berney, C., Fahrni, J., Bolivard, I., & Pawlowski, J. (2005). Molecular phylogeny and classification of the lobose amoebae. Protist, 156, 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Smirnov, A. V., Nassonova, E., Chao, E., & Cavalier-Smith, T. (2007). Phylogeny, evolution and taxonomy of vannellid amoebae. Protist, 158, 295–324.

    Article  CAS  PubMed  Google Scholar 

  • Smirnov, A. V., Chao, E., Nassonova, E., & Cavalier-Smith, T. (2011). A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist, 152, 545–570.

    Article  Google Scholar 

  • Smith, H. G., & Coupe, S. (2002). Testate amoebae – Past, present and future. European Journal of Protistology, 37, 367–369.

    Google Scholar 

  • Smith, H. G., Bobrov, A., & Lara, E. (2008). Diversity and biogeography of testate amoebae. Biodiversity and Conservation, 17, 329–343.

    Article  Google Scholar 

  • Tekle, Y., Grant, J., Anderson, O. R., Nerad, T. A., Cole, J. C., Patterson, D. J., & Katz, L. A. (2008). Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ based on rate corrected SSU rDNA analysis. Molecular Phylogenetics and Evolution, 47, 339–352.

    Article  CAS  PubMed  Google Scholar 

  • Tekle, Y., Anderson, O. R., Lecky, A. F., & Kelly, S. D. (2013). A new freshwater amoeba: Cochliopodium pentatrifurcatum n. sp. (Amoebozoa, Amorphea). Journal of Eukaryotic Microbiology, 60, 342–349.

    Article  PubMed  Google Scholar 

  • Tekle, Y., Anderson, O. R., & Lecky, A. F. (2014). Evidence of parasexual activity in “asexual amoebae” Cochliopodium spp. (Amoebozoa): Extensive cellular and nuclear fusion. Protist, 165, 676–687.

    Article  PubMed  Google Scholar 

  • Visvesvara, G. S., Moura, H., & Schuster, F. L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology and Medical Microbiology, 50, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Von Siebold, C. T. E. (1845). Lehrbuch der vergleichenden Anatomie der Wirbellossen Thiere. In C. T. E. v. Siebold & H. Stannius (Eds.), Lehrbuch der Vergleichenden Anatomie. Berlin: von Veit.

    Google Scholar 

  • Wanner, M., Elmer, M., Kazda, M., & Xylander, W. E. R. (2008). Community assembly of terrestrial testate amoebae: How is the very first beginning characterized? Microbial Ecology, 56, 43–54.

    Article  PubMed  Google Scholar 

  • Warner, B. G., Asada, T., & Quinn, N. P. (2007). Seasonal influences on the ecology of testate Amoebae (Protozoa) in a small Sphagnum peatland in Southern Ontario, Canada. Microbial Ecology, 54, 91–100.

    Article  PubMed  Google Scholar 

  • Weisse, T., & Müller, H. (1998). Planktonic protozoa and the microbial food web in Lake Constance. Archiv für Hydrobiologie, Special Issue: Advances in Limnology, 53, 223–254.

    Google Scholar 

  • Wilkinson, D. M., Creevy, A. L., Kalu, C. L., & Schwartzman, D. W. (2015). Are heterotrophic and silica-rich eukaryotic microbes an important part of the lichen symbiosis? Mycology, 6, 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Yarlett, N., & Hackstein, J. H. P. (2005). Hydrogenosomes: One organelle, multiple origins. Bioscience, 55, 657–668.

    Article  Google Scholar 

  • Yoon, H. S., Grant, J., Tekle, Y. I., Wu, M., Chaon, B. C., Cole, J. C., Logsdon, J. M. Jr., Patterson, D. J., Bhattacharya, D., & Katz, L. A. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evolutionary Biology, 8, Article No. 14, 1–12.

    Google Scholar 

  • Zhang, J., Ömälä-Odegrip, A.-M., Mappes, J., & Laakso, J. (2014). Top-down effects of lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases. Ecology and Evolution, 4, 4444–4453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann-Timm, H., Holst, H., & Müller, S. (1998). Seasonal dynamics of aggregates and their typical biocoenosis in the Elbe Estuary. Estuaries, 21, 613–621.

    Article  Google Scholar 

  • Zwart, K. B., Kuikman, P. J., & Van Veen, J. A. (1994). Rhizosphere protozoa: Their significance in nutrient dynamics. In J. F. Darbyshire (Ed.), Soil Protozoa (pp. 93–121). Wallingford: CAB International.

    Google Scholar 

Download references

Acknowledgments

Some of the published research by O.R.A. reviewed here was supported partially by funds from the National Science Foundation, International Polar Year (award no. 0732664). This is Lamont-Doherty Earth Observatory Contribution Number 7353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Roger Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Roger Anderson, O. (2016). Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and Others). In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics